Skip to main content
Log in

A natural Nrf2 activator glucoraphanin improves hepatic steatosis in high-fat diet-induced obese male mice associated with AMPK activation

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Genetic and pharmacological activation of the transcription factor nuclear factor, erythroid derived 2, like 2 (Nrf2) alleviates high-fat diet (HFD)-induced obesity in mice; however, synthetic Nrf2 activators are not clinically available due to safety concerns. Dietary glucoraphanin (GR), a naturally occurring compound found in cruciferous vegetables that activates Nrf2 and induces its target antioxidant genes. We previously demonstrated that GR increased thermogenesis and mitigated HFD-induced obesity in lean healthy mice. In this study, we investigated the therapeutic effects of GR on pre-existing obesity and associated metabolic disorders, such as hepatic steatosis, with or without low-fat dietary intervention. Eight-week-old male C57BL/6J mice were fed an HFD for 9 weeks to induce obesity. Subsequently, these obese mice were fed either the HFD or a normal chow diet, supplemented with or without GR, for an additional 11 weeks. GR supplementation did not decrease the body weight of HFD-fed mice; however, it significantly reduced plasma alanine aminotransferase and aspartate aminotransferase levels and hepatic triglyceride accumulation. These improvements in liver damage by GR were associated with decreased expression levels of fatty acid synthesis genes and proinflammatory chemokine genes, suppressed c-Jun N-terminal kinase activation, and reduced proinflammatory phenotypes of macrophages in the liver. Moreover, metabolome analysis identified increased hepatic levels of adenosine 5′-monophosphate (AMP) in HFD-GR mice compared with those in HFD mice, which agreed with increased phosphorylation levels of AMP-activated protein kinase. Our results show that GR may have a therapeutic potential for treating obesity-associated hepatic steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69:2672–82.

    Article  PubMed  Google Scholar 

  2. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851–61.

    Article  PubMed  Google Scholar 

  3. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–57.

    Article  PubMed  Google Scholar 

  4. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000;275:16023–9.

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 2018;98:1169–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chartoumpekis DV, Kensler TW. New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr Diabetes Rev. 2013;9:137–45.

    PubMed  PubMed Central  Google Scholar 

  7. Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, et al. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol. 2013;33:2996–3010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Saha PK, Reddy VT, Konopleva M, Andreeff M, Chan L. The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic-acid methyl ester has potent anti-diabetic effects in diet-induced diabetic mice and Lepr(db/db) mice. J Biol Chem. 2010;285:40581–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z, Ling W, et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54:922–34.

    Article  PubMed  CAS  Google Scholar 

  10. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kelley MJ, Glaser EM, Herndon JE, Becker F, Bhagat R, Zhang Y-J, et al. Safety and efficacy of weekly oral oltipraz in chronic smokers. Cancer Epidemiol Biomark Prev. 2005;14:892–9.

    Article  CAS  Google Scholar 

  12. Fahey JW, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol. 1999;37:973–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624. https://doi.org/10.1038/ncomms11624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Houghton CA, Fassett RG, Coombes JS. Sulforaphane: translational research from laboratory bench to clinic. Nutr Rev. 2013;71:709–26.

    Article  PubMed  Google Scholar 

  15. Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med. 2017;9:eaah4477. https://doi.org/10.1126/scitranslmed.aah4477.

    Article  PubMed  CAS  Google Scholar 

  16. Nagata N, Xu L, Kohno S, Ushida Y, Aoki Y, Umeda R, et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes. 2017;66:1222–36.

    Article  PubMed  CAS  Google Scholar 

  17. Kensler TW, Ng D, Carmella SG, Chen M, Jacobson LP, Muñoz A, et al. Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis. 2012;33:101–7.

    Article  PubMed  CAS  Google Scholar 

  18. Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes. 2012;61:1680–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Obstfeld AE, Sugaru E, Thearle M, Francisco A-M, Gayet C, Ginsberg HN, et al. C–C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59:916–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–12.

    Article  PubMed  CAS  Google Scholar 

  21. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17:684–96.

    Article  PubMed  Google Scholar 

  22. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–25.

    Article  PubMed  CAS  Google Scholar 

  23. Lin T-Y, Cantley LC, DeNicola GM, Lin T-Y, Cantley LC, DeNicola GM. NRF2 rewires cellular metabolism to support the antioxidant response. IntechOpen. 2016. https://doi.org/10.5772/65141.

    Article  Google Scholar 

  24. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Czaja MJ. JNK regulation of hepatic manifestations of the metabolic syndrome. Trends Endocrinol Metab. 2010;21:707–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci. 2016;61:1294–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology. 2008;48:770–81.

    Article  PubMed  CAS  Google Scholar 

  28. Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology. 2009;49:87–96.

    Article  PubMed  CAS  Google Scholar 

  29. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1310-1321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61:416–26.

    Article  PubMed  CAS  Google Scholar 

  31. Patsouris D, Li P-P, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 2008;8:301–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 2008;7:496–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pal S, Konkimalla VB. Sulforaphane regulates phenotypic and functional switching of both induced and spontaneously differentiating human monocytes. Int Immunopharmacol. 2016;35:85–98.

    Article  PubMed  CAS  Google Scholar 

  34. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  PubMed  CAS  Google Scholar 

  35. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 1830;2013:3143–53.

    Google Scholar 

  36. Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013;18:556–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Woods A, Williams JR, Muckett PJ, Mayer FV, Liljevald M, Bohlooly-Y M, et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. 2017;18:3043–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016;311:E730–40.

    Article  PubMed  Google Scholar 

  39. Zhao X, Sun X, Chaggan C, Liao Z, Wong KI, He F, et al. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science. 2020;367:652–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Qing L, Fu J, Wu P, Zhou Z, Yu F, Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am J Transl Res. 2019;11:655–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Yu Y, Cai W, Zhou J, Lu H, Wang Y, Song Y, et al. Anti-arthritis effect of berberine associated with regulating energy metabolism of macrophages through AMPK/ HIF-1α pathway. Int Immunopharmacol. 2020;87:106830. https://doi.org/10.1016/j.intimp.2020.106830.

    Article  PubMed  CAS  Google Scholar 

  42. Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song Y, et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol. 2021;140:186–95.

    Article  PubMed  CAS  Google Scholar 

  43. Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med. 2022;190:75–93.

    Article  PubMed  CAS  Google Scholar 

  44. Meakin PJ, Chowdhry S, Sharma RS, Ashford FB, Walsh SV, McCrimmon RJ, et al. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol. 2014;34:3305–20.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu J, Donepudi AC, Moscovitz JE, Slitt AL. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue. PLoS ONE. 2013;8:e79841. https://doi.org/10.1371/journal.pone.0079841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kikuchi M, Ushida Y, Shiozawa H, Umeda R, Tsuruya K, Aoki Y, et al. Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects. World J Gastroenterol. 2015;21:12457–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Tsuguhito Ota for kindly supporting this project. The authors thank H Akutsu (Asahikawa Medical University, Asahikawa, Japan) for technical assistance of GC-MS analysis. The authors also thank M Ishiguro and C Hasegawa (Asahikawa Medical University, Asahikawa, Japan), M Nakayama and K Hara (Kanazawa University, Kanazawa, Japan) for technical assistance and the care of animals. Parts of the data in this article were presented at IDF conference December 2021 (IDF21-0354).

Funding

This work was supported by a grant Grant-in-Aid for Scientific Research (C) (15K00813 for N.N.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

SP, KS, MN, and LX performed experiments and collected and analyzed data. SP and KS wrote first draft of the manuscript. SP, NN and YT contributed to discussions and edited the manuscript. YT supervised the project. All authors reviewed and accepted the final version of the manuscript.

Corresponding author

Correspondence to Yumi Takiyama.

Ethics declarations

Conflict of interest

Y.T. was supported by several foundational grants, including grants from Nippon Boehringer Ingelheim Co., Ltd., Taisho Pharmaceutical Co., Ltd., Ono pharmaceutical Co., Ltd. From October 2019 to September 2021, K.S. was belonged to the Division of Diabetes and Lifestyle Diseases Prevention and Therapeutics, an endowed course at Asahikawa Medical University, which was run with donations from Ono pharmaceutical Co., Ltd, Taisho Pharmaceutical Co., Ltd., and Nippon Boehringer Ingelheim Co., Ltd. No other potential conflicts of interest relevant to this article were reported.

Compliance with ethical standards

All animal procedures were approved by the Kanazawa University Animal Care and Use Committee (date of approval: September 5, 2013, approved number: AP-132930) and were performed in accordance with the standards set forth in the guidelines and regulations for the Care and Use of Laboratory Animals at Kanazawa University. This study does not contain any studies with human subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Promsuwan, S., Sawamoto, K., Xu, L. et al. A natural Nrf2 activator glucoraphanin improves hepatic steatosis in high-fat diet-induced obese male mice associated with AMPK activation. Diabetol Int 15, 86–98 (2024). https://doi.org/10.1007/s13340-023-00658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-023-00658-6

Keywords

Navigation