Skip to main content

Advertisement

Log in

Glycemic control and bone metabolism in postmenopausal women with type 2 diabetes mellitus

  • Original article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Objective

Diabetes mellitus type 2 (T2DM) has accumulated attention as a fracture risk in osteoporosis. In the present study, we investigated the effect of glycemic level, its control, and its treatment on bone mineral density (BMD) and bone metabolism focusing on Japanese postmenopausal women with T2DM.

Methods

BMD was determined by dual-energy X-ray absorptiometry to calculate T score and Z score at the lumbar spine at L2–4. Bone metabolic markers such as serum type 1 collagen cross-linked N-telopeptides (sNTX), a marker of bone resorption, and serum bone-specific alkaline phosphatase (BAP), a marker of bone formation, were measured.

Results

We enrolled 55 Japanese postmenopausal women with T2DM [initial age 63.5 ± 7.7 years, BMI 22.8 ± 3.5 kg/m2, hemoglobin A1c (HbA1c) 7.53 ± 1.94% (HbA1c Japanese Diabetes Society; JDS) 7.26 ± 1.68%], L2–4 BMD 0.927 ± 0.169 g/cm2, T score −0.738 ± 1.527; Z score 0.945 ± 1.272]. There were no significant differences on L2–4 BMD, T score, Z score, or bone metabolic markers among three treatment groups regarding diet, orally administered medication, and insulin. In the analysis of correlation coefficients, HbA1c significantly correlated with sNTX (r = 0.363, p = 0.008), and the significant, but weak, correlation was observed between HbA1c and Z score (r = 0.306, p = 0.026). In patients newly treated with intensive insulin therapy (n = 5), glycemic control significantly suppressed sNTX after 3 months (p < 0.05).

Conclusions

The control of glycemic level might be correlated with osteoclast function in terms of bone resorption marker, which might be linked with fracture risk in postmenopausal women with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barrett-Connor E, Grady D, Stefanick ML. The rise and fall of menopausal hormone therapy. Annu Rev Public Health. 2005;26:115–40.

    Article  PubMed  Google Scholar 

  2. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115:3318–25.

    Article  PubMed  CAS  Google Scholar 

  3. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–50.

    Article  PubMed  Google Scholar 

  4. Szmuilowicz ED, Stuenkel CA, Seely EW. Influence of menopause on diabetes and diabetes risk. Nat Rev Endocrinol. 2009;5:553–8.

    Article  PubMed  Google Scholar 

  5. Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res. 2007;22:1317–28.

    Article  PubMed  CAS  Google Scholar 

  6. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab. 2006;91:3404–10.

    Article  PubMed  CAS  Google Scholar 

  7. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Zmuda JM, Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB. Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: the Health, Aging, and Body Composition Study. J Bone Miner Res. 2004;19:1084–91.

    Article  PubMed  Google Scholar 

  8. Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care. 2007;30:835–41.

    Article  PubMed  Google Scholar 

  9. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18:427–44.

    Article  PubMed  CAS  Google Scholar 

  10. Dobnig H, Piswanger-Solkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, Maier E, Maritschnegg P, Sieberer C, Fahrleitner-Pammer A. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab. 2006;91:3355–63.

    Article  PubMed  CAS  Google Scholar 

  11. Gerdhem P, Isaksson A, Akesson K, Obrant KJ. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int. 2005;16:1506–12.

    Article  PubMed  CAS  Google Scholar 

  12. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, Sugimoto T. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94:45–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T. Serum osteocalcin/bone-specific alkaline phosphatase ratio is a predictor for the presence of vertebral fractures in men with type 2 diabetes. Calcif Tissue Int. 2009;85:228–34.

    Article  PubMed  CAS  Google Scholar 

  14. Nagasaka S, Murakami T, Uchikawa T, Ishikawa SE, Saito T. Effect of glycemic control on calcium and phosphorus handling and parathyroid hormone level in patients with non-insulin-dependent diabetes mellitus. Endocr J. 1995;42:377–83.

    Article  PubMed  CAS  Google Scholar 

  15. Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S, Matsumoto T. Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab. 1997;82:2915–20.

    Article  PubMed  CAS  Google Scholar 

  16. Rosato MT, Schneider SH, Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int. 1998;63:107–11.

    Article  PubMed  CAS  Google Scholar 

  17. Sayinalp S, Gedik O, Koray Z. Increasing serum osteocalcin after glycemic control in diabetic men. Calcif Tissue Int. 1995;57:422–5.

    Article  PubMed  CAS  Google Scholar 

  18. Shu A, Yin MT, Stein E, Cremers S, Dworakowski E, Ives R, Rubin MR. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int. 2011 [Epub ahead of print]

  19. Anonymous WHO Study Group. Assessment of fracture risk and its application to screening for post-menopausal osteoporosis. Geneva: WHO; 1994.

    Google Scholar 

  20. Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, Ito C, Inagaki N, Iwamoto Y, Kasuga M, Hanafusa T, Haneda M, Ueki K. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. Diabetol Int. 2010;1:2–20.

    Article  Google Scholar 

  21. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD. Insulin receptor expression in bone. J Bone Miner Res. 1996;11:1312–20.

    Article  PubMed  CAS  Google Scholar 

  22. Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008;23:1334–42.

    Article  PubMed  Google Scholar 

  23. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180:32–9.

    Article  PubMed  Google Scholar 

  24. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48:1292–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T. Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab. 2010;28:554–60.

    Article  PubMed  CAS  Google Scholar 

  26. Hosoda H, Fukui M, Nakayama I, Asano M, Kadono M, Hasegawa G, Yoshikawa T, Nakamura N. Bone mass and bone resorption in postmenopausal women with type 2 diabetes mellitus. Metabolism. 2008;57:940–5.

    Article  PubMed  CAS  Google Scholar 

  27. Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99:411–24.

    Article  PubMed  CAS  Google Scholar 

  28. Capoglu I, Ozkan A, Ozkan B, Umudum Z. Bone turnover markers in patients with type 2 diabetes and their correlation with glycosylated haemoglobin levels. J Int Med Res. 2008;36:1392–8.

    PubMed  CAS  Google Scholar 

  29. Danielson KK, Elliott ME, LeCaire T, Binkley N, Palta M. Poor glycemic control is associated with low BMD detected in premenopausal women with type 1 diabetes. Osteoporos Int. 2009;20:923–33.

    Article  PubMed  CAS  Google Scholar 

  30. Williams JP, Blair HC, McDonald JM, McKenna MA, Jordan SE, Williford J, Hardy RW. Regulation of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun. 1997;235:646–51.

    Article  PubMed  CAS  Google Scholar 

  31. Chesnut CH 3rd, Rosen CJ. Reconsidering the effects of antiresorptive therapies in reducing osteoporotic fracture. J Bone Miner Res. 2001;16:2163–72.

    Article  PubMed  CAS  Google Scholar 

  32. Weinstein RS. True strength. J Bone Miner Res. 2000;15:621–5.

    Article  PubMed  CAS  Google Scholar 

  33. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11:1531–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Tatsuno.

About this article

Cite this article

Terano, T., Suzuki, S., Yoshida, T. et al. Glycemic control and bone metabolism in postmenopausal women with type 2 diabetes mellitus. Diabetol Int 3, 68–74 (2012). https://doi.org/10.1007/s13340-011-0058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-011-0058-3

Keywords

Navigation