Skip to main content
Log in

Occurrence of Bacillus thuringiensis and their phages in Yemen soil

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt) isolates were found in all samples of soil in nine Governorates of Yemen. From 384 isolates of Bacillus recovered from these soil samples after acetate selection, 104 isolates (27.1 %) were Bt. Five isolates of Bt were selected and insecticidal activity was tested against Culex pipiens, Callosobruchus maculatus and Spodoptera littoralis. The Bt isolate YH18 gave toxicity to all tested insects larvae. This study extended to isolate phages active against the selected Bt isolates. Five phages were isolated and classified into two groups of tailed phages. Four phages with long non-contractile tails and hexagonal heads (Siphoviridae) and one phage with very short tail and isometric head (Podoviridae). Susceptibility of selected Bt to infect by these phages was studied by spot-test technique. Also the Bt isolate no YH18 was resistant to all tested phages. This is the first report illustrates the diversity and the abundance of Bt and Bt phage in Yemen soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7.

    CAS  Google Scholar 

  2. Abdel-Hameed A, Carlberg G, Lindsrom K, El-Tayeb OM. Studies on Bacillus thuringiensis H-14 strains isolated from Egypt. Correlation between specific plasmids and δ-endotoxin production. Environ Toxicol Water Qual. 1994;9:108–9.

    Google Scholar 

  3. Ackermann HW. Frequency of morphological phage descriptions in the year 2000. Arch Virol. 2001;146:843–57.

    Article  CAS  PubMed  Google Scholar 

  4. Ackermann HW, Azizbekyan RR, Emadi Konjin HP. New Bacillus bacteriophage species. Arch. Virol. 1994;135:333–44.

    Article  CAS  PubMed  Google Scholar 

  5. Ackermann HW, Azizbekyan RR, Konjin HP. New Bacillus bacteriophage species. Arch Virol. 1994;135:333–44.

    Article  CAS  PubMed  Google Scholar 

  6. Ackermann HW, Azizbekyan RR, Bernier RL, et al. Phages typing of Bacillus subtilis and Bacillus thuringiensis. Res Microbiol. 1995;146:643–57.

    Article  CAS  PubMed  Google Scholar 

  7. Adams MH. Bacteriophages. New York: Interscience Publishers, Inc.; 1959.

    Google Scholar 

  8. Apaydin O, Cinar C, Turanli F, Harsa S, Gunes H. Identification and bioactivity of native strains of Bacillus thuringiensis from grain-related habitats in Turkey. Biol Control. 2008;45:21–8.

    Article  Google Scholar 

  9. Armengol G, Escobar MC, Maldonado ME, Orduz S. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J Appl Microbiol. 2007;102:77–88.

    Article  CAS  PubMed  Google Scholar 

  10. Assaeedi ASA, Osman GEH, Abulreesh HH. The occurrence and insecticidal activity of Bacillus thuringiensis in the arid environments. AJCS. 2011;5:1185–90.

    CAS  Google Scholar 

  11. Azizbekian KR, Kuzin AL, Dobrzhanskia EO. Restriction analysis of DNA from phages isolated from type strains of Bacillus thuringiensis. Microbiologiia. 1997;66:247–53.

    CAS  Google Scholar 

  12. Bradely DE. Ultrastructure of bacteriophages and bacteriocins. Bacteriol. Rev. 1976;31:230–314.

    Google Scholar 

  13. Bukhari DA, Shakoori AR. Isolation and molecular characterization of cry4 harboring Bacillus thuringiensis isolates from Pakistan and mosquitocidal activity of their spores and total proteins. Pak. J. Zool. 2010;42:1–15.

    CAS  Google Scholar 

  14. Cavadoes CF, Fonseca RN, Chaves JQ, Rabinovitch L, et al. Identification of entomopathogenic Bacillus thuringiensis isolated from Simulium (Diptera, simuliidae) larva and adults. Mem Inst Oswaldo Cruz. 2001;96(7):1017–21.

    Article  Google Scholar 

  15. Chapman HC, Barr AR. Techniques for successful colonization of many mosquito species. Mosq. News. 1969;29(4):535.

    Google Scholar 

  16. Chibeu A, Lingoh EJ, Masson L, Manges A, Harel J, Ackermann HW, et al. Bacteriophages with the ability to degrade uropathogenic E. coli biofilms. Viruses. 2012;4:471–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Crickmore N, Zeigler DR, Fcitclson J, Schnepf E, Van Ric J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62:807–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Delucca AJ, Smonson JG, Larson AD. Bacillus thuringiensis distribution in soils of the United States. Can J Microbiol. 1981;27:865–70.

    Article  PubMed  Google Scholar 

  19. Fornelos N, Bamford JKH, Mahillon J. Phage-borne factors and host LexA regulate the lytic switch in phage GIl01. J. Bacteriol. 2011;193:6008–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gao M, Li R, Dai S, Wu Y, Yi D. Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biol Control. 2008;44:380–8.

    Article  CAS  Google Scholar 

  21. Hastowo S, Lay BW, Ohba M. Naturally occurring Bacillus thuringiensis in Indonesia. J. Appl. Bacteriol. 1992;73:108–13.

    Article  Google Scholar 

  22. Hernandez CS, Andrew R, Bel Y, Ferre J. Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia. J. Invertebr. Pathol. 2005;88:8–16.

    Article  CAS  PubMed  Google Scholar 

  23. Ibarra JE, del Rincon MC, Orduz S, Noriega D, Benintende G, et al. Diversity of Bacillus thuringiensis strain from Latin America with insecticidal activity against different mosquito species. Appl Environ Microbiol. 2003;69:5269–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ishimatsu T, Mizuki E, Nishimura K, Akao T, Saitoh H, et al. Occurrence of Bacillus thuringiensis in fresh water of Japan. Curr Microbiol. 2000;40:217–20.

    Article  Google Scholar 

  25. Lee DH, Cha IH, Woo DS, Ohba M. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wild life in Korea. Can. J. Microbiol. 2003;49:465–71.

    Article  CAS  PubMed  Google Scholar 

  26. Lee WJ, Billington C, Hudson JA, Heinemann JA. Isolation and characterization of phages infecting Bacillus cereus. Lett Appl Microbiol. 2011;52:456–64.

    Article  CAS  PubMed  Google Scholar 

  27. Liao W, Song S, Sun F, Jia Y, Zeng W, et al. Isolation characterization and genome sequencing of phage MZtpo2 from Bacillus thuringiensis MZ1. Arch Virol. 2008;153:1855–65.

    Article  CAS  PubMed  Google Scholar 

  28. Maduell P, Callejas R, Cabrera KR, Armengol G, et al. Distribution and characterization of Bacillus thuringiensis on the phylloplane of species piper (Piperaceae) in three altitudinal levels. Microb Ecol. 2002;44:144–53.

    Article  CAS  PubMed  Google Scholar 

  29. Martin PAW, Travers RS. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 1989;55:2437–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Martin PAW, Haransky EB, Travers RS, Reichelderfer CF. Rapid biochemical testing of large numbers of Bacillus thuringiensis isolated using dotes. Biotechniques. 1985;3:386–92.

    Google Scholar 

  31. Mordan BA, Labib I. Soil characteristics as factors governing the existence, recycling and persistence of Bacillus thuringiensis in Egypt. J Egypt Soc Parasitol. 2003;33:331–40.

    Google Scholar 

  32. Obedidat M, Hassawi D, Ghabeish I. Characterization of Bacillus thuringiensis strains from Jordan and their toxicity to the Lepidotera, Ephestia kuehniella Zeller. Afr. J. Biotechnol. 2004;3:226–622.

    Google Scholar 

  33. Ogunijimi AA, Gbenle GO, Olukoya DK, Akinrimisi EO. PCR-basad identification of Bacillus thuringiensis isolated from soil samples in Nigeria. Z. Naturforsch C. 2000;55:987–90.

    Google Scholar 

  34. Ohba M, Wasano N, Mizuki E. Bacillus Thuringiensis soil populations naturally occurring in the Ryukyus, a subtropic region of Japan. Microbiol Res. 2000;155:17–22.

    Article  CAS  PubMed  Google Scholar 

  35. Park HW, Hayes SR, Mangum CM. Distribution of mosquitocidal Bacillus thuringiensis and Bacillus sphaericus from sediment samples in Florida. J. Asia-Pac. Entomol. 2008;11:217–20.

    Article  Google Scholar 

  36. Quesada-Morage E, Garica-Tovar E, Valverde-Garica P, et al. Isolation geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Microbiol Res. 2004;159:59–71.

    Article  Google Scholar 

  37. Raymond B, Johnston PR, Nielsen-LeRoux C, et al. Bacillus thuringiensis: an important pathogen? Trends Microbiol. 2010;18:189–94.

    Article  CAS  PubMed  Google Scholar 

  38. Saadaoui I, Rouis S, Jaua S. A new Tunisian strain of Bacillus thuringiensis Krustaki having high insecticidal activity and δ-endotoxin. Arch. Microbiol. 2009;191:341–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sadder MT, Khyami-Horani H, Al-Banna L. Applications of RAPD technique to study Polymorphism among Bacillus thuringiensis isolated from Jordan. World J Microbiol Biotechnol. 2006;22:1307–12.

    Article  CAS  Google Scholar 

  40. Seifinejad A, Salehi Jouzani GR, Hosseinzadeh A, Abdmishani C. Characterization of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strains collection. Biol Control. 2008;44:216–26.

    Article  CAS  Google Scholar 

  41. Serwer P, Hayes SJ, Zaman S, Lieman K, Rolando M, et al. Improved isolation of under sampled bacteriophages: finding of distant terminase genes. Virology. 2004;329:412.

    Article  CAS  PubMed  Google Scholar 

  42. Som NC, Chowdhury M. A survey study of Bacillus thuringiensis (Bt) using phages P1, P2 and P3 in Tamluk West Bengal, India. J Coll Med Sci Nepal. 2010;6:15–8.

    Article  Google Scholar 

  43. Strömsten NJ, Benson SD, Burnett RM, Bamford DH, et al. The Bacillus thuringiensis linear double-stranded DNA Phage Bam 35, which is highly similar to the Bacillus cereus linear plasmid PBCIin15, has a prophage state. J Bacteriol. 2003;185:6985–9.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Travers RS, Martin PA, Richelderfer CF. Selective process for efficient isolation of soil Bacillus thuringiensis spp. Appl Environ Microbiol. 1987;53:1263–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Uribe D, Maritnez W, Ceron J. Distributions and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Invertebr. Pathol. 2003;82:119–27.

    Article  CAS  PubMed  Google Scholar 

  46. Verheust C, Jensen G, Mahillon J. PGIL01, a linear tectiviral plasmid prophage originating from B. thuringiensis serovar israelensis. Mircobiol. 2003;149:2083–92.

    CAS  Google Scholar 

  47. Vilas-Boos GT, peruca APS, Arantes OMN. Biology and taxonomy of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Can J Microbiol. 2007;53:673–87.

    Article  Google Scholar 

  48. Williamson KE, Radosevich MF, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol. 2005;7:3119–25.

    Article  Google Scholar 

  49. Yasutake K, Binh ND, Kagoshima K, Uemori A, Ohgushi A, Maeda M, et al. Occurrence of parasporin-producing Bacillus thuringiensis in Vietnam. Can J Microbiol. 2006;52:365–72.

    Article  CAS  PubMed  Google Scholar 

  50. Yousten AA. Bacteriophage typing of mosquito pathogenic strains of Bacillus sphaericus. J Invertebr Pathol. 1984;43:124–5.

    Article  Google Scholar 

  51. Yousten AA, de Barjac H, Hedrick J, Casmao Dumanoir V, et al. Comparison between bacteriophage typing and serotyping for the differentiation of Bacillus sphaericus strains. Ann Microbial. 1980;3:297–308.

    Google Scholar 

  52. Yu ZN. Bacillus thuringiensis. Beijing: Science Press; 1990 P113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal El-Didamony.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Didamony, G. Occurrence of Bacillus thuringiensis and their phages in Yemen soil. VirusDis. 25, 107–113 (2014). https://doi.org/10.1007/s13337-013-0181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-013-0181-9

Keywords

Navigation