1 Introduction

Let \(\mathcal {H}\) be the family of analytic functions in the region \( \mathbb {D}=\left\{ z:\left| z\right| <1\right\} \) on the complex plane \(\mathbb {C}\). Let \(\mathcal {A}\subset \mathcal {H}\) denote the set of all functions f(z) that are analytic in \(\mathbb {D}\) with the series representation

$$\begin{aligned} f(z)=z+\sum _{n=2}^{\infty }a_{n}\text { }z^{n},\quad z\in \mathbb {D} \text {.} \end{aligned}$$
(1.1)

Also by \(\mathcal {S}\) we means a subfamily of the set \(\mathcal {A}\) which contains univalent functions. We next denote by \(\mathcal {P}\) the class of analytic functions p(z) which are normalized by

$$\begin{aligned} p\left( z\right) =1+\sum _{n=1}^{\infty }p_{n}z^{n}, \end{aligned}$$
(1.2)

such that \(\mathfrak {Re} \{p(z)\} >0,\ \ z\in \mathbb {D}.\) Furthermore, by using the set \(\mathcal {P}\), let \(\mathcal {S}^{*}\) and \( \mathcal {C}\) denote the families of starlike and convex functions in \(\mathbb {D}\) which are defined as

$$\begin{aligned} \mathcal {S}^{*}= & {} \left\{ f:f\in \mathcal {S}\text { and }\frac{ zf^{\prime }\left( z\right) }{f\left( z\right) }\in \mathcal {P},\text { }z\in \mathbb {D}\right\} , \nonumber \\&\nonumber \\ \mathcal {C}= & {} \left\{ f:f\in \mathcal {S}\text { and }\frac{(zf^{\prime }\left( z\right) )^{\prime }}{f^{\prime }\left( z\right) }\in \mathcal {P}, \text { }z\in \mathbb {D}\right\} . \end{aligned}$$
(1.3)

The above subfamilies of the set \(\mathcal {S}\) are among the most studied families. Recall also, that if \(f\in \mathcal A\) satisfies

$$\begin{aligned} {\mathfrak {Re}} \left\{ \frac{zf'(z)}{e^{i\alpha }g(z)}\right\} >0 ,\quad z\in \mathbb D \end{aligned}$$
(1.4)

for some \(g\in \mathcal S^*\) and some \(\alpha \in (-\pi /2,\pi /2)\), then f is said to be close-to-convex in \(\mathbb D\) and denoted by \(f\in \mathcal K\). An univalent function \(f\in \mathcal A\) belongs to \(\mathcal K\) if and only if the complement E of the image-region \(F=\left\{ f(z): |z|<1\right\} \) is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays). We note that if \(g\left( z\right) =z\), then the class \(\mathcal {K}\) reduces to the set \(\mathcal {R}\) of bounded turning functions.

Jack’s Lemma [2], says that if f(z) is regular in the disc \(|z|\le r\), \(f(0)=0\), and |f(z)| assumes its maximum at \(z_0\) on the circle \(|z|=r\), then \(z_0f'(z)_0/f(z_0)\ge 1\). Now we will consider a lemma, which is a small extension of Jack’s Lemma.

We will test behavior of \(z_0f'(z)_0/f(z_0)\) when |f(z)| assumes its local maximum at \(z_0\) on the following neighborhood

$$\begin{aligned} N_{\varepsilon }(z_0)=\{z:|z|\le |z_0|,\quad |z-z_0|\le \varepsilon \}. \end{aligned}$$

Lemma 1.1

[1] Assume that \(p(z)=a_kz^k+a_{k+1}z^{k+1}+\cdots \), \(a_k\ne 0\), \(k\ge 1\) is analytic in \(\mathbb D\). If there exists \(z_0\in \mathbb D\) such that

$$\begin{aligned} \max _{z\in N_{\varepsilon }(z_0)}|p(z)|=|p(z_0)| \end{aligned}$$
(1.5)

for some \(\varepsilon >0\), then \(z_0p'(z_0)/p(z_0)\) is a real number and

$$\begin{aligned} \frac{ z_0p'(z_0)}{p(z_0)}\ge k\ge 0. \end{aligned}$$
(1.6)

Proof

Let us put

$$\begin{aligned} p(z)=z^k\varphi (z). \end{aligned}$$

Then \(\varphi (z)\) is analytic in \(\mathbb D\) and \(|\varphi (z)|\) takes its local maximum value at the point \(z=z_0\) on the circular arc \(z=|z_0|e^{i\theta }\), \(\arg z_0-\varepsilon<\theta <\arg z_0+\varepsilon \). When z moves on the circle \(|z|=|z_0|\) with positive direction, then \(\arg \varphi (z)\) is increasing at \(z=z_0\). Therefore, we have

$$\begin{aligned} \left[ \frac{\mathrm{d}\arg \varphi (|z_0|e^{i\theta })}{\mathrm{d\theta }}\right] _{\theta =\theta _0} =\mathfrak {Re}\frac{ z_0\varphi '(z_0)}{\varphi (z_0)}\ge 0 \end{aligned}$$

and so

$$\begin{aligned} \mathfrak {Re}\frac{z_0p'(z_0)}{p(z_0)} =\mathfrak {Re}\left( k+\frac{ z_0\varphi '(z_0)}{\varphi (z_0)}\right) \ge k\ge 0. \end{aligned}$$
(1.7)

From the hypothesis, we have

$$\begin{aligned} \left[ \frac{\mathrm{d}|p(|z_0|e^{i\theta })|}{\mathrm{d\theta }}\right] _{\theta =\theta _0} = 0, \end{aligned}$$

so

$$\begin{aligned} \left[ \frac{\mathrm{d}\log |p(|z_0|e^{i\theta })|}{\mathrm{d\theta }}\right] _{\theta =\theta _0} = 0 \end{aligned}$$

too. Therefore, we have

$$\begin{aligned} \left[ \mathfrak {Im}\frac{\mathrm{d}\log p(z)}{\mathrm{d} \log z}\right] _{z=z_0}= & {} \left[ -\frac{\mathrm{d}\log |p(|z_0|e^{i\theta })|}{\mathrm{d\theta }}\right] _{\theta =\theta _0}\\= & {} \left[ -\left( \frac{\mathrm{d}|p(z)|}{\mathrm{d}\theta }\right) \frac{1}{|p(z)|}\right] _{\theta =\theta _0}\\= & {} 0=\mathfrak {Im}\frac{ z_0p'(z_0)}{p(z_0)}. \end{aligned}$$

This shows

$$\begin{aligned} \frac{ z_0p'(z_0)}{p(z_0)}\ge k\ge 0. \end{aligned}$$
(1.8)

\(\square \)

Theorem 1.2

Assume that \(p(z)=1+a_kz^k+a_{k+1}z^{k+1}+\cdots \), \(a_k\ne 0\), \(k\ge 1\) is analytic in \(\mathbb D\). Assume there exist two points \(z_1,z_2\in \mathbb D\) such that \(|z_1|=|z_2|\) and

$$\begin{aligned} \arg p(z_2)= -\frac{\pi \beta }{2},\quad \arg p(z_1)=\frac{\pi \alpha }{2} \end{aligned}$$
(1.9)

for some \(\alpha \), \(\beta \), \(\alpha ,\beta \in (0,2)\). If

$$\begin{aligned} -\frac{\pi \beta }{2}<\arg p(z)<\frac{\pi \alpha }{2},\quad |z|<|z_1|=|z_2| \end{aligned}$$
(1.10)

and

$$\begin{aligned} \max _{z\in N_{\varepsilon }(z_1)}|\arg \{p(z)\}|= & {} |\arg \{p(z_1)\}|\end{aligned}$$
(1.11)
$$\begin{aligned} \max _{z\in N_{\varepsilon }(z_2)}|\arg \{ p(z)\}|= & {} |\arg \{p(z_2)\}| \end{aligned}$$
(1.12)

for some \(\varepsilon >0\), then we have

$$\begin{aligned} \frac{ z_1p'(z_1)}{p(z_1)}=\frac{i\alpha k}{2}\left( a+\frac{1}{a}\right) , \quad \frac{\alpha k}{2}\left( a+\frac{1}{a}\right) \ge \alpha k, \end{aligned}$$
(1.13)

where \(p^{1/\alpha }(z_1)=ia\), \(a>0\), and

$$\begin{aligned} \frac{ z_2p'(z_2)}{p(z_2)}=-\frac{i\beta k}{2}\left( b+\frac{1}{b}\right) , \quad -\frac{\beta k}{2}\left( b+\frac{1}{b}\right) \le -\beta k, \end{aligned}$$
(1.14)

where \(p^{1/\beta }(z_2)=-ib\), \(b>0\).

Proof

Let us check the first case \(\arg p(z_1)=\pi \alpha /2\) and put

$$\begin{aligned} q(z)= [p(z)]^{1/\alpha },\quad \varphi (z)=\frac{1-q(z)}{1+q(z)}, \end{aligned}$$

then it follows that

$$\begin{aligned} q(0)=1,q'(0)=q''(0)=\cdots =q^{(k-1)}(0)=0\quad \mathrm{and}\quad q^{(k)}(0)\ne 0 \end{aligned}$$

and so

$$\begin{aligned} \varphi (0)=\varphi '(0)=\varphi ''(0)=\cdots =\varphi ^{(k-1)}(0)=0\quad \mathrm{and}\quad \varphi ^{(k)}(0)\ne 0. \end{aligned}$$

From the hypothesis, we have

$$\begin{aligned} \arg q(z)<\frac{\pi }{2},\quad z\in D_\varepsilon (z_1)=N_\varepsilon (z_1){\setminus }\{z_1\} \end{aligned}$$

for some \(\varepsilon >0\) and

$$\begin{aligned} \arg q(z_1)=\frac{\pi }{2}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} |\varphi (z)|<1,\quad z\in D_\varepsilon (z_1) \end{aligned}$$

and

$$\begin{aligned} |\varphi (z_1)|=1. \end{aligned}$$

This shows that \(|\varphi (z)|\) takes its local maximum value at the point \(z=z_1\) in the the domain \(N_\varepsilon (z_1)\) and applying Lemma 1.1, we have

$$\begin{aligned} \frac{z_1\varphi '(z_1)}{\varphi (z_1)}= & {} -\frac{z_1q'(z_1)}{1-q(z_1)}-\frac{z_1q'(z_1)}{1+q(z_1)}\\= & {} -\frac{2z_1q'(z_1)}{(1-q(z_1))(1+q(z_1))}\\= & {} -\frac{2z_1q'(z_1)}{(1-ia)(1+ia)}\\= & {} -\frac{2z_1q'(z_1)}{1+a^2}\\\ge & {} k \end{aligned}$$

where \(k\ge 1\) and \(q(z_1)=ia\) and \(a>0\). This shows that \(z_1q'(z_1)\) is a negative real number. This gives

$$\begin{aligned} \mathfrak {Im} \frac{ z_1q'(z_1)}{q(z_1)} =\mathfrak {Im} \frac{ z_1q'(z_1)}{ia} \ge \frac{k}{2}\left( a+\frac{1}{a}\right) \ge k. \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \frac{ z_1q'(z_1)}{q(z_1)}=\frac{1}{\alpha }\frac{ z_1p'(z_1)}{p(z_1)} \end{aligned}$$

and putting \(z=|z_1|e^{i\theta }\) in the section \(\arg z_1-\varepsilon<\theta <\arg z_1+\varepsilon \), then \(\arg \{q(z_1)\}\) takes its local maximum \(\pi /2\) at the point \(\theta =\arg \{z_1\}\) in this section and so, we have

$$\begin{aligned} \mathfrak {Re} \frac{ z_1q'(z_1)}{q(z_1)} =\left[ \mathfrak {Re} \frac{\mathrm{d}\log q(z)}{\mathrm{d} z}\right] _{z=z_1}=\left[ \frac{\mathrm{d}\arg q(z)}{\mathrm{d} \theta }\right] _{\theta =\arg z_1}=0. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \frac{ z_1p'(z_1)}{p(z_1)}=i\frac{\alpha k}{2}\left( a+\frac{1}{a}\right) , \quad \frac{\alpha k}{2}\left( a+\frac{1}{a}\right) \ge \alpha k \end{aligned}$$

where \(p^{1/\alpha }(z_1)=ia\), \(a>0\). This completes the proof of (1.13).

For the next case \(\arg p(z_2)=-\pi \beta /2\) let us put

$$\begin{aligned} \rho (z)= [p(z)]^{1/\beta },\quad \psi (z)=\frac{1-\rho (z)}{1+\rho (z)}, \end{aligned}$$

then it follows that

$$\begin{aligned} \rho (0)=1,\rho '(0)=\rho ''(0)=\cdots =\rho ^{(k-1)}(0)=0\quad \mathrm{and}\quad \rho ^{(k)}(0)\ne 0 \end{aligned}$$

and so

$$\begin{aligned} \psi (0)=\psi '(0)=\psi ''(0)=\cdots =\psi ^{(k-1)}(0)=0\quad \mathrm{and}\quad \psi ^{(k)}(0)\ne 0. \end{aligned}$$

From the hypothesis, we have

$$\begin{aligned} \arg \rho (z)>-\frac{\pi }{2},\quad z\in D_\varepsilon (z_2)=N_\varepsilon (z_2){\setminus }\{z_2\} \end{aligned}$$

for some \(\varepsilon >0\) and

$$\begin{aligned} \arg \rho (z_2)=-\frac{\pi }{2}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} |\psi (z)|<1,\quad z\in D_\varepsilon (z_2) \end{aligned}$$

and

$$\begin{aligned} |\psi (z_2)|=1. \end{aligned}$$

This shows that \(|\psi (z)|\) takes its local maximum value at the point \(z=z_2\) in the the domain \(N_\varepsilon (z_2)\) and applying Lemma 1.1, we have

$$\begin{aligned} \frac{z_2\psi '(z_2)}{\psi (z_2)}= & {} -\frac{z_2\rho '(z_2)}{1-\rho (z_2)}-\frac{z_2\rho '(z_2)}{1+\rho (z_2)}\\= & {} -\frac{2z_2\rho '(z_2)}{(1-\rho (z_2))(1+\rho (z_2))}\\= & {} -\frac{2z_2\rho '(z_2)}{(1-ib)(1+ib)}\\= & {} -\frac{2z_2\rho '(z_2)}{1+b^2}\\\ge & {} k, \end{aligned}$$

where \(k\ge 1\) and \(\rho (z_2)=-ib\) with \(b>0\). This shows that \(z_2\rho '(z_2)\) is a negative real number. This gives

$$\begin{aligned} \mathfrak {Im} \frac{ z_2\rho '(z_2)}{\rho (z_2)} =\mathfrak {Im} \frac{ z_2\rho '(z_2)}{-ib} \le \frac{k}{2}\left( b+\frac{1}{b}\right) \ge k. \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \frac{ z_2\rho '(z_2)}{\rho (z_2)}=\frac{1}{\beta }\frac{ z_2p'(z_2)}{p(z_2)} \end{aligned}$$

and putting \(z=|z_2|e^{i\theta }\) in the section \(\arg z_2-\varepsilon<\theta <\arg z_2+\varepsilon \), then \(\arg \{\rho (z_2)\}\) takes its local minimum \(-\pi /2\) at the point \(\theta =\arg \{z_2\}\) in this section and so, we have

$$\begin{aligned} \mathfrak {Re} \frac{ z_2\rho '(z_2)}{\rho (z_2)} =\left[ \mathfrak {Re} \frac{\mathrm{d}\log \rho (z)}{\mathrm{d} z}\right] _{z=z_2}=\left[ \frac{\mathrm{d}\arg \rho (z)}{\mathrm{d} \theta }\right] _{\theta =\arg z_2}=0. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \frac{ z_2p'(z_2)}{p(z_2)}=-i\frac{\beta k}{2}\left( b+\frac{1}{b}\right) \end{aligned}$$

is a pure imaginary number, where \(p^{1/\beta }(z_2)=-ib\), \(b>0\) so

$$\begin{aligned} -\frac{\beta k}{2}\left( b+\frac{1}{b}\right) \le -\beta k. \end{aligned}$$

This completes the proof of (1.14). \(\square \)

Theorem 1.2 is a generalization of a result in [4, 5].

Corollary 1.3

Under the assumptions of Theorem 1.2 we have

$$\begin{aligned} \int _{z_2}^{z_1}\left\{ \frac{zp'(z)}{p(z)}\right\} '\mathrm{d}z\ge (\alpha +\beta )k. \end{aligned}$$

Corollary 1.3 implies that the length of image curve under \(zp'(z)/p(z)\) of the circular arc \(|z|=|z_1|=|z_2|\) from \(z_2\) to \(z_1\) is great or equal to \((\alpha +\beta )k\).

Corollary 1.4

Under the assumptions of Theorem 1.2 and if \(\arg z_2<\arg z_1\) and

$$\begin{aligned} \left| \mathfrak {Re}\left[ \left\{ \frac{p'(z)}{p(z)}+ \frac{zp''(z)}{p'(z)}-z\left( \frac{p'(z)}{p(z)}\right) ^2\right\} iz\right] \right| <\frac{1}{2\pi },\quad z\in \mathbb D, \end{aligned}$$
(1.15)

then we have

$$\begin{aligned} \mathfrak {Re}\{p(z)\}>0,\quad z\in \mathbb D. \end{aligned}$$

Proof

From Lemma 1.1 we have

$$\begin{aligned} 0<\alpha +\beta \le (\alpha +\beta )k\ge \alpha +\beta \le \left| \int _{z_2}^{z_1}\left\{ \frac{zp'(z)}{p(z)}\right\} '\mathrm{d}z\right| . \end{aligned}$$

On the other hand and applying (1.15), we have

$$\begin{aligned} 0<\alpha +\beta \le \left| \int _{z_2}^{z_1}\left\{ \frac{zp'(z)}{p(z)}\right\} '\mathrm{d}z\right|= & {} \left| \mathfrak {Re}\int _{\theta _2}^{\theta _1}\left\{ \frac{p'(z)}{p(z)}+ \frac{zp''(z)}{p'(z)}-z\left( \frac{p'(z)}{p(z)}\right) ^2\right\} iz\mathrm{d}\theta \right| \\\le & {} \int _{\theta _2}^{\theta _1}\left| \mathfrak {Re}\left[ \left\{ \frac{p'(z)}{p(z)}+ \frac{zp''(z)}{p'(z)}-z\left( \frac{p'(z)}{p(z)}\right) ^2\right\} iz\right] \right| \mathrm{d}\theta \\\le & {} \frac{\theta _1-\theta _2}{2\pi }<1, \end{aligned}$$

where \(\arg z_1=\theta _1\), \(\arg z_2=\theta _2\) and \(\theta _2<\theta _1\). This shows that

$$\begin{aligned} 0<\alpha +\beta <1 \end{aligned}$$

which implies \( 0<\alpha <1\) and \( 0<\beta <1\) or

$$\begin{aligned} \mathfrak {Re}\{p(z)\}>0,\quad z\in \mathbb D. \end{aligned}$$

\(\square \)

In [8, p.54] we can find the following result for the convolution of power series

$$\begin{aligned} \sum _{n=0}^{\infty }a_nz^n*\sum _{n=0}^{\infty }b_nz^n=\sum _{n=0}^{\infty }a_nb_nz^n. \end{aligned}$$

Lemma 1.5

If \(g(z)\in {\mathcal C}\), \(f(z)\in {\mathcal S}^*\) and F(z) is analytic in \(\mathbb D\), then for all \(z\in \mathbb D\)

$$\begin{aligned} \frac{g(z) * F(z)f(z)}{g(z) * f(z)}\in \overline{co}~F(\mathbb D), \end{aligned}$$

where \(\overline{co}A\) denotes the closed convex hull of A.

Theorem 1.6

If \(f(z)=a_0+a_1z+a_2z^2+\cdots , h(z)=b_0+b_1z+b_2z^{2}+\cdots \in \mathcal H\), \(zh''(z)/(2b_2)\in \mathcal S^*\) and

$$\begin{aligned} q(z)=\frac{f'(z)-a_1}{h'(z)-b_1},\quad p(z)=\frac{f''(z)}{h''(z)},\quad z\in \mathbb D, \end{aligned}$$

are analytic functions in \(\mathbb D\), then

$$\begin{aligned} q(\mathbb D)\subseteq \overline{co}~p(\mathbb D). \end{aligned}$$
(1.16)

Proof

Denote

$$\begin{aligned} s(z)=\sum _{n=2}^{\infty } \frac{z^{n-1}}{n-1}=-\log (1-z),\quad z\in \mathbb D, \end{aligned}$$

then \(s(z)\in \mathcal C\).

Applying Lemma 1.5, we have

$$\begin{aligned} \frac{f'(z)-a_1}{h'(z)-b_1}= & {} \frac{\sum _{n=2}^{\infty } na_nz^{n-1}}{\sum _{n=2}^{\infty } nb_nz^{n-1}}\\= & {} \frac{\sum _{n=2}^{\infty } na_nz^{n-2}}{\sum _{n=2}^{\infty } nb_nz^{n-2}}\\= & {} \frac{\sum _{n=2}^{\infty } \frac{z^{n-2}}{n-1} * \sum _{n=2}^{\infty } n(n-1)a_nz^{n-2}}{\sum _{n=2}^{\infty } \frac{z^{n-2}}{n-1} * \sum _{n=2}^{\infty } n(n-1)b_nz^{n-2}}\\= & {} \frac{\frac{s(z)}{z}*f''(z)}{\frac{s(z)}{z}*h''(z)} \\= & {} \frac{\frac{s(z)}{z}*p(z)h''(z)}{\frac{s(z)}{z}*h''(z)} \\= & {} \frac{s(z)*p(z)\frac{zh''(z)}{2b_2}}{s(z)*\frac{zh''(z)}{2b_2}} \\\in & {} \overline{co}~p(\mathbb D) \end{aligned}$$

because \(s(z)\in \mathcal C\) and \(zh''(z)/(2b_2)\in \mathcal S^*\). \(\square \)

The differential subordination theory provides another method od proving this type of results. For two functions f(z) and g(z) analytic in \(\mathbb D\), we say that ff(z) is subordinate to g(z), written by \(f\left( z\right) \prec g\left( z\right) \), if there exists a function w(z), analytic in \(\mathbb D\), with \(w(0) =0\) and \(|w(z)| <1\) such that \( f(z)=g( w(z)) \).

In [3, p.70] we can find the following result

Lemma 1.7

Let H(z) be convex univalent, \(P(z)\in \mathcal H\) and \(\mathfrak {Re}\{P(z)\}>0\) in \(\mathbb D\). If p(z) is amalytic in \(\mathbb D\) with \(p(0)=H(0)\), then

$$\begin{aligned} p(z)+P(z)zp'(z) \prec H(z)\quad \Rightarrow \quad p(z) \prec H(z). \end{aligned}$$
(1.17)

Theorem 1.8

Let H(z) be convex univalent in \(\mathbb D\). Assume that

$$\begin{aligned} \frac{f^{(s)}(z)}{g^{(s)}(z)},\quad \frac{f^{(s-1)}(z)}{g^{(s-1)}(z)},\quad \frac{g^{(s-1)}(z)}{zg^{(s)}(z)} \end{aligned}$$

are analytic in \(\mathbb D\) for some positive integer s and

$$\begin{aligned} \mathfrak {Re}\left\{ \frac{g^{(s-1)}(z)}{zg^{(s)}(z)}\right\} >0,\quad z\in \mathbb D. \end{aligned}$$
(1.18)

If

$$\begin{aligned} \frac{f^{(s)}(z)}{g^{(s)}(z)}\prec H(z), \end{aligned}$$

and with \(f^{(s-1)}(0)/g^{(s-1)}(0)=H(0)\) then

$$\begin{aligned} \frac{f^{(s-1)}(z)}{g^{(s-1)}(z)}\prec H(z). \end{aligned}$$
(1.19)

Proof

Denote

$$\begin{aligned} p(z)=\frac{f^{(s-1)}(z)}{h^{(s-1)}(z)}. \end{aligned}$$

Then we have \(p(z)h^{(s-1)}(z)=f^{(s-1)}(z)\), by differentation, we obtain

$$\begin{aligned} p(z)+ \frac{h^{(s-1)}(z)}{zh^{(s)}(z)}zp'(z)=\frac{f^{(s)}(z)}{h^{(s)}(z)}\prec H(z). \end{aligned}$$

Applying (1.17) and (1.18) give \(p(z) \prec H(z)\), i. e. (1.19).

Corollary 1.9

Assume that \(\alpha \in (0,1]\) and

$$\begin{aligned} \frac{f''(z)}{h''(z)},\quad \frac{f'(z)}{h'(z)},\quad \frac{h(z)}{zh'(z)},\quad \frac{h'(z)}{zh''(z)} \end{aligned}$$

are analytic in \(\mathbb D\) Then

$$\begin{aligned} \frac{f'(z)}{h'(z)}\prec \left\{ \frac{1+z}{1-z}\right\} ^{\alpha }~and~\ ~ \mathfrak {Re}\left\{ \frac{h(z)}{zh'(z)}\right\} >0,\quad z\in \mathbb D,\quad \Rightarrow \quad \frac{f(z)}{h(z)}\prec \left\{ \frac{1+z}{1-z}\right\} ^{\alpha } \end{aligned}$$
(1.20)

and

$$\begin{aligned} \frac{f''(z)}{h''(z)}\prec \left\{ \frac{1+z}{1-z}\right\} ^{\alpha }~and~\ ~ \mathfrak {Re}\left\{ \frac{h'(z)}{zh''(z)}\right\} >0,\quad z\in \mathbb D,\quad \Rightarrow \frac{f'(z)}{h'(z)}\prec \left\{ \frac{1+z}{1-z}\right\} ^{\alpha }. \end{aligned}$$
(1.21)

Consider, \(h(z)=e^z-1\), which satisfies

$$\begin{aligned} \mathfrak {Re}\frac{zh''(z)}{h'(z)}=\mathfrak {Re}\{z\}>-1,\quad z\in \mathbb D. \end{aligned}$$

Therefore, \(h(z)\in \mathcal C\) and so \(h(z)\in \mathcal S^*\) which gives

$$\begin{aligned} \mathfrak {Re}\left\{ \frac{h(z)}{zh'(z)}\right\} >0,\quad z\in \mathbb D. \end{aligned}$$

Applying (1.20) we obtain

$$\begin{aligned} \frac{f'(z)}{e^z}\prec \left\{ \frac{1+z}{1-z}\right\} ^{\alpha }~ \Rightarrow \frac{f(z)}{e^z-1}\prec \left\{ \frac{1+z}{1-z}\right\} ^{\alpha }. \end{aligned}$$

Corollary 1.10

Assume that \(\alpha \in [0,1)\) and

$$\begin{aligned} \frac{f''(z)}{h''(z)},\quad \frac{f'(z)}{h'(z)},\quad \frac{h(z)}{zh'(z)},\quad \frac{h'(z)}{zh''(z)} \end{aligned}$$

are analytic in \(\mathbb D\). Then

$$\begin{aligned} \mathfrak {Re}\left\{ \frac{h(z)}{zh'(z)}\right\}>0~and~\ ~ \mathfrak {Re}\frac{f'(z)}{h'(z)}>\alpha ,\quad z\in \mathbb D\quad \Rightarrow \mathfrak {Re}\frac{f(z)}{h(z)}>\alpha ,\quad z\in \mathbb D \end{aligned}$$
(1.22)

and

$$\begin{aligned} \mathfrak {Re}\left\{ \frac{h'(z)}{zh''(z)}\right\}>0~and~\ ~ \mathfrak {Re}\frac{f''(z)}{h''(z)}>\alpha ,\quad z\in \mathbb D\quad \Rightarrow \mathfrak {Re}\frac{f'(z)}{h'(z)}>\alpha ,\quad z\in \mathbb D. \end{aligned}$$
(1.23)

Property (1.22) was known earlier, see Theorem 2.6f in [3, p.63].

Theorem 1.11

Assume that \(h(z)\in \mathcal H\) and

$$\begin{aligned} \mathfrak {Re}\frac{h'(z)-\gamma -z}{z(h''(z)-1)}>0,\quad z\in \mathbb D \end{aligned}$$
(1.24)

for some \(\gamma \in (1,\infty ]\) and

$$\begin{aligned} \left| \arg \{h'(z)-\gamma -z\}\right| <\frac{\beta \pi }{2},\quad z\in \mathbb D, \end{aligned}$$
(1.25)

for some \(\beta \in (0,1]\). Assume that \(f(z)\in \mathcal H\) and

$$\begin{aligned} \left| \arg \frac{f''(z)-1}{h''(z)-1}\right| <\frac{\alpha \pi }{2},\quad z\in \mathbb D, \end{aligned}$$
(1.26)

for some \(\alpha \in (0,1]\). Furthermore, assume that

$$\begin{aligned} F(z)=\frac{f'(z)-\gamma -z}{h'(z)-\gamma -z} \end{aligned}$$

is analytic in \(\mathbb D\) with \(F(0)=1\). Then

$$\begin{aligned} \left| \arg \{f'(z)\}\right| <\frac{(\alpha +\beta )\pi }{2},\quad z\in \mathbb D. \end{aligned}$$
(1.27)

Proof

Consider Theorem 1.8 with \(s=2\), \(H(z)=\left( \frac{1+z}{1-z}\right) ^{\alpha }\) and \(g'(z)= h'(z)-\gamma -z\). Then H(z) is convex univalent and condition (1.18) becomes (1.24). Applying this for (1.26) gives us

$$\begin{aligned} \left| \arg \left\{ \frac{f'(z)-\gamma -z}{h'(z)-\gamma -z}\right\} \right| < \frac{\alpha \pi }{2},\quad z\in \mathbb D. \end{aligned}$$
(1.28)

Now, applying (1.25), we have

$$\begin{aligned}&~&\left| \arg \{f'(z)-\gamma -z\}\right| - \left| \arg \{h'(z)-\gamma -z\}\right| \\\le & {} \left| \arg \{f'(z)-\gamma -z\}-\arg \{h'(z)-\gamma -z\}\right| \\= & {} \left| \arg \left\{ \frac{f'(z)-\gamma -z}{h'(z)-\gamma -z}\right\} \right| \\< & {} \frac{\alpha \pi }{2},\quad z\in \mathbb D \end{aligned}$$

because of (1.28). So we have

$$\begin{aligned} \left| \arg \{f'(z)-\gamma -z\}\right|\le & {} \frac{\alpha \pi }{2}+ \left| \arg \{h'(z)-\gamma -z\}\right| \\< & {} \frac{(\alpha +\beta )\pi }{2},\quad z\in \mathbb D. \end{aligned}$$

A simple geometric observation shows that

$$\begin{aligned} \left| \arg \{f'(z)\}\right| < \left| \arg \{f'(z)-\gamma -z\}\right| ,\quad z\in \mathbb D,\quad \gamma \in (1,\infty ]. \end{aligned}$$

Therefore,

$$\begin{aligned} \left| \arg \{f'(z)\}\right|< \left| \arg \{f'(z)-\gamma -z\}\right| <\frac{(\alpha +\beta )\pi }{2},\quad z\in \mathbb D. \end{aligned}$$

\(\square \)

Condition (1.27) implies that f(z) is strongly close-to-convex of order \(\alpha +\beta \) with respect convex function \(g(z)=z\). We obtain more when \(\alpha +\beta \le 1\) in the following corollary.

Corollary 1.12

Assume that \(h(z)\in \mathcal H\) and

$$\begin{aligned} \mathfrak {Re}\frac{h'(z)-\gamma -z}{z(h''(z)-1)}>0,\quad z\in \mathbb D \end{aligned}$$
(1.29)

for some \(\gamma \in (1,\infty ]\) and

$$\begin{aligned} \left| \arg \{h'(z)-\gamma -z\}\right| <\frac{\beta \pi }{2},\quad z\in \mathbb D, \end{aligned}$$
(1.30)

for some \(\beta \in (0,1]\). Assume that \(f(z)\in \mathcal H\) and

$$\begin{aligned} \left| \arg \frac{f''(z)-1}{h''(z)-1}\right| <\frac{\alpha \pi }{2},\quad z\in \mathbb D, \end{aligned}$$
(1.31)

for some \(\alpha \in (0,1-\beta ]\). Furthermore, assume that

$$\begin{aligned} F(z)=\frac{f'(z)-\gamma -z}{h'(z)-\gamma -z} \end{aligned}$$

is analytic in \(\mathbb D\) with \(F(0)=1\). Then

$$\begin{aligned} \mathfrak {Re}\{f'(z)\}>0,\quad z\in \mathbb D. \end{aligned}$$
(1.32)

Proof

We have \(\alpha +\beta \le 1\), then by Theorem 1.11, we have

$$\begin{aligned} \left| \arg \{f'(z)\}\right| < \frac{(\alpha +\beta )\pi }{2}\le \frac{\pi }{2},\quad z\in \mathbb D. \end{aligned}$$

This gives (1.32). \(\square \)

Condition (1.32) implies the univelence f(z) in \(\mathbb D\) by Noshiro–Warshawski’s theorem.