Skip to main content
Log in

DArTseq molecular markers for resistance to Phytophthora cinnamomi in pineapple (Ananas comosus L.)

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Root rot caused by Phytophthora cinnamomi is a major disease of pineapple worldwide, and while genetic resistance is known to exist within the genus, there have been few efforts to incorporate resistance into commercial varieties. The development of molecular markers and a better understanding of the physiology contributing to resistance would be a major advantage for breeding efforts. DArTseq was used in this study to investigate resistance to P. cinnamomi in pineapple. Resistance appears closely associated with a single broad loci on chromosome five covering the positions 4.6–5.5 Mb and two separate scaffolds. Thirteen putative resistance/susceptibility proteins were identified including six leucine-rich repeat receptor kinases, a chitin elicitor receptor kinase, a 2, 3-bisphosphoglycerate-dependent phosphoglycerate mutase, a microrchidia 4-like protein, a hypothetical protein, an uncharacterised protein family 0664 stress-induced protein, a transcription factor bHLH and a ribonuclease 2. The DArTseq bulk segregate approach successfully identified molecular markers associated with resistance to P. cinnamomi in pineapple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta-Muniza CH, Escobar-Tovarb L, Valdes-Rodríguezc S, Fernández-Paviad S, Arias Saucedob LJ, de la Cruz Espindola Barquerae M, Gómez Limb MA (2012) Identification of avocado (Persea americana) root proteins induced by infection with the oomycete Phytophthora cinnamomi using a proteomic approach. Physiol Plant 144:59–72

    Article  Google Scholar 

  • Allardyce JA, Rookes JE, Hussain HIH, Cahill DM (2013) Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi. Funct Integr Genomics 13:217–228

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Pegg KG, Scott C (2012) Phosphonate applied as a pre-plant dip controls Phytophthora cinnamomi root and heart rot in susceptible pineapple hybrids. Australasian Plant Pathol 41(1):59–68

    Article  CAS  Google Scholar 

  • Barna B, Fodor J, Harrach BD, Pogany M, Király Z (2012) The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol and Biochem 59:37–43

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J and Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps Bioinformatics PubMed ID: 15297300

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Yogesh R, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cahill D, Legge N, Grant B, Weste G (1989) Cellular and histological changes induced by Phytophthora cinnamomi in a group of plant species ranging from fully susceptible to fully resistant. Phytopathology 79:417–424

    Article  Google Scholar 

  • Cahill DM, Bennett IJ, McComb JA (1993) Mechanisms of resistance to Phytophthora cinnamomi in clonal, micropropagated Eucalyptus marginata. Plant Pathol 42(6):865–872

    Article  Google Scholar 

  • Chen D-W, Zentmyer GA (1970) Production of sporangia by Phytophthora cinnamomi in axenic culture. Mycologia 62(2):397

    Article  Google Scholar 

  • Chen W, Qiuming Y, Gunvant BP, Gaurav A, Rupesh KD, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, An YC, Valliyadan B, Varshney RK, Nguyen HT (2016) Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Frontiers in Plant Sci 7:1044

    Google Scholar 

  • Christie M, Brosnan CA, Rothnagel JA, Carroll BJ (2011) RNA decay and RNA silencing in plants: competition or collaboration. Frontiers in Plant Sci 2:99

    Article  CAS  Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic acid methyl ester. Phytopathology 83:1054–1062

    Article  CAS  Google Scholar 

  • Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Goze E, Kilian A, Ahmadi N, Dingkuhn M (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8(11):e78037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks L, Carlborg O, Markland S, Johansson AM (2013) Identification of null alleles and deletions from SNP genotypes for an intercross between domestic and wild chickens. G3 genes genomes. Genetics 3:1253–1260

    Google Scholar 

  • Cruz VM, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. Plos One 8(5):e64062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Sousa N, Carlier JD, Santo T, Leitao J (2013) An integrated genetic map of pineapple (Ananas comosus (L.) Merr.) Scientia Hort 157:113–118

    Article  Google Scholar 

  • Dempsey RW, Merchant A, Tausz M (2012) Differences in ascorbate and glutathione levels as indicators of resistance and susceptibility in Eucalyptus trees infected with Phytophthora cinnamomi. Tree Physiol 32:1148–1160

    Article  CAS  PubMed  Google Scholar 

  • Du L, Sun GM, Zhang X, Liu Y, Prinyawiwatkul W, Xu Z, Shen Y (2016) Comparisons and correlations of phenolic profiles and anti-oxidant activities of seventeen varieties of pineapple. Food Sci Biotechno 25:445

    Article  CAS  Google Scholar 

  • Ebadzad G, Cravador A (2014) Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection. Spring 3:613

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchel SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Article  Google Scholar 

  • Engelbrecht J, van den Berg N (2013) Expression of defence-related genes against Phytophthora cinnamomi in five avocado rootstocks. South African J of Sci 109:11–12

    Article  Google Scholar 

  • Fan M, Wang M, Bai MY (2016) Diverse roles of SERK family genes in plant growth, development and defence response. Sci China Life Sci 59(9):889–896

  • Galiana E, Bonnet P, Conrod S, Keller H, Panabieres F, Ponchet M, Poupet A, Ricci P (1997) RNase activity prevents the growth of a fungal pathogen in tobacco leaves and increases induction of systemic acquired resistance with Eliciti. Plant Physiol 115:1557–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY, Koonin EV (2004) Conserved hypothetical proteins: prioritization of targets for experimental study. Nucleic Acids Res 32(18):5452–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:2005–2027

    Article  Google Scholar 

  • Harris CJ, Husmann D, Liu W, Kasmi FE, Wang H, Papikian A, Pastor WA, Moissard G, Vashisht AA, Dangl JL, Wohlschlegel JA, Jacobsen SE (2016) Arabidopsis AtMORC4 and AtMORC7 form nuclear bodies and repress a large number of protein-coding genes. PLoS Genet 12:e1005998

    Article  PubMed  PubMed Central  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martine C, Weisshar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol and Evolution 20(5):735–747

    Article  CAS  Google Scholar 

  • Hillwig MS, Contento AL, Meyer A, Ebany D, Bassham DC, MacIntosh GC (2011) RNS2, a conserved member of the RNase T2 family is necessary for ribosomal RNA decay in plants. Proc Natl Acad Sci U S A 108(3):1093–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing Y, Sun H, Yuan W, Wang Y, Li Q, Liu Y, Li Y, Qian W (2016) SUVH2 and SUVH9 couple two essential steps for transcriptional gene silencing in Arabidopsis. Mol Plant 9:1156–1167

    Article  CAS  PubMed  Google Scholar 

  • Jupe J, Stam R, Howden AJM, Morris JA, Zhang R, Hedley P, Huitema E (2013) Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biol 14(6):63

    Article  Google Scholar 

  • Kang HG, Woo Choi H, Von Einem S, Manosalva P, Ehlers K, Liu PP, Buxa SV, Moreau M, Mang HG, Kachroo P, Kogel KH, Klessig DF (2012) CRT1 is a nuclear-translocated MORC endonuclease that participates in multiple levels of plant immunity. Nat Commun 3:1297

    Article  PubMed  Google Scholar 

  • Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C, Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. Meth Mol Biol 888:67–89

    Article  Google Scholar 

  • Kilian A, Sanewski G, Ko L (2016) The application of DArTseq technology to pineapple. Acta Hort (ISHS) 1111:181–188

    Article  Google Scholar 

  • Kliebenstein DJ, Rowe HC (2008) Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction. Plant Sci 174:551–556

    Article  CAS  Google Scholar 

  • Lee SJ, Rose JKC (2010) Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav 5(6):769–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manosalva P, Manohar M, Kogel KH, Kang HG, Klessig DF (2015) The GHKL ATPase MORC1 modulates species-specific plant immunity in solanaceae. Mol Plant-Microbe Interactions 28:927–942

    Article  CAS  Google Scholar 

  • Mazarei M, Lennon KA, Puthoff DP, Rodermel SR, Baum TJ (2003) Expression of an Arabidopsis phosphoglycerate mutase homologue is localized to apical meristems, regulated by hormones, and induced by sedentary plant-parasitic nematodes. Plant Mol Biol 53:513–530

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Ming R, VanBuren R, Wai CM, Tang HB, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang JS, Huang LX, Zhang LM, Miao WJ, Zhang J, Ye ZY, Miao CY, Lin ZC, Wang H, Zhou HY, Yim WC, Priest HD, Zheng CF, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng GY, Singh R, Sharma A, Min XJ, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao ZY, Fang JP, Liu J, Zhang XD, Zhang Q, Hu WC, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu XG, Yang XH, Smith JAC, Cushman JC, Paull RE, Yu QY (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moissiard G, Bischof S, Husmann D, Pastor WA, Hale CJ, Yen L, Stroud H, Papikian A, Vashisht AA, Wohlschlegel JA, Jacobsen SE (2014) Transcriptional gene silencing by Arabidopsis microrchidia homologues involves the formation of heteromers. Proceedings of the Nat Acad of Sci of the United States of America 111:7474–7479

    Article  CAS  Google Scholar 

  • Racolta A, Bryan AC, Tax FE (2014) The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification. Dev Dyn 243(2):257–278

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCulley M, Ruperao P, Parkin IAP, Luckett DJ, Wratten N (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One 9(7):e101673

    Article  PubMed  PubMed Central  Google Scholar 

  • Redwan RM, Saidin A, Kumar SV (2016) The draft genome of MD-2 pineapple using hybrid error correction of long reads. DNA Res 23(5):427–439

  • Reeksting BJ, Coetzer N, Mahomed W, Engelbrecht J, van den Berg N (2014) De novo sequencing, assembly, and analysis of the root transcriptome of Persea americana (mill.) in response to Phytophthora cinnamomi and flooding. PLOS ONE 9(2):e86399

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohrbach KG, Johnson MW (2003) Pests, diseases and weeds. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple: botany, production and uses. CABI Publishing, Oxon, pp 33–55

    Google Scholar 

  • Sanchez-Vallet A, Mesters JR, Thomma BPHJ (2014) The battle for chitin recognition in plant microbe interactions. FEMS Microb Reviews 39:171–183

    Article  Google Scholar 

  • Sanewski GM, Ko HL, DeFaveri J and Kilian A (2016) Genetic resistance to the root rot pathogen Phytophthora cinnamomi in Ananas. Acta Hort 1111:281–286

  • Serrazina S, Santos C, Machado H, Pesquita C, Vicentini R, Pais MS, Sebastiana M, Costa R (2015) Castanea root transcriptome in response to Phytophthora cinnamomi challenge. Tree Genet Genomes 11:6

    Article  Google Scholar 

  • Silveira RDD, Abreu FRM, Mamidi S, McClean PR, Vianello RP, Lanna AC, Carneiro NP, Brondani C (2015) Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa). Genet Mol Res 14(3):8181–8200

    Article  CAS  PubMed  Google Scholar 

  • Taylor CB, Bariola PA, Delcardayr SB, Raines RT, Green PJ (1993) RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proceed Nat Academy of Sciences United States of America 90:5118–5122

    Article  CAS  Google Scholar 

  • Tippett JT, Shea SR, Hill TC, Shearer BL (1983) Development of lesions caused by Phytophthora cinnamomi in the secondary phloem of Eucalyptus marginata. Australian J Bot 31(2):197–210

    Article  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function and signal transduction pathways. Int Rev Cytol 234:1–46

    Article  CAS  PubMed  Google Scholar 

  • Tsuwanto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for normal development of the epidermal surface in Arabidopsis embryos. Plant J 54(1):30–42

    Article  Google Scholar 

  • Way HM, Birch RG, Manners JM (2011) A comparison of individual and combined L-phenylalanine ammonia lyase and cationic peroxidase transgenes for engineering resistance in tobacco to necrotrophic pathogens. Plant Biotechnol Rep 5:301–308

    Article  Google Scholar 

  • Williams DDF, Fleisch H (1993) Historical review of pineapple breeding in Hawaii. Acta Hortic 334:67–76

    Article  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liang P, Ming R (2016) Genome-wide identification and characterization of nucleotide-binding site (NBS) resistance genes in pineapple. Tropical Plant Biol 9:187–199

    Article  CAS  Google Scholar 

  • Zhao Z, Assmann SM (2011) The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J Exp Bot 62(14):5179–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Dr. Jay Anderson of the University of Queensland and Dr. Natalie Dillon of The Department of Agriculture and Fisheries for critically reviewing the manuscript and providing valuable advice. This project has been funded by Horticulture Innovation Australia Ltd. (Hort Innovation) using voluntary contributions from Diversity Arrays Technology Pty Ltd. and the Department of Agriculture and Fisheries and matched funds from the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sanewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanewski, G., Ko, L., Innes, D. et al. DArTseq molecular markers for resistance to Phytophthora cinnamomi in pineapple (Ananas comosus L.). Australasian Plant Pathol. 46, 499–509 (2017). https://doi.org/10.1007/s13313-017-0512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-017-0512-1

Keywords

Navigation