Skip to main content

Advertisement

Log in

Antisense Oligonucleotides: A Unique Treatment Approach

  • Drug Review
  • Published:
Indian Pediatrics Aims and scope Submit manuscript

Abstract

Synthetic Antisense oligonucleotides (ASOs) are novel and efficient laboratory tools to regulate the expression of specific genes, and have only recently come into clinical use. These are synthetic single-stranded DNA analogs, whose sequence is complementary to a target nucleotide and alter protein synthesis by several mechanisms. We herein provide a primer on the topic for pediatricians, as this group of drugs is likely to see many more drugs for previously incurable diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoctoral Journal. 2016;4:35–50.

    Google Scholar 

  2. Verma A. Recent advances in antisense oligonucleotide therapy in genetic neuromuscular diseases. Ann Indian Acad Neurol. 2018;21:3–7.

    Article  Google Scholar 

  3. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligo-deoxyribonucleotide. Proc Natl Acad Sci USA. 1978;75:285–8.

    Article  CAS  Google Scholar 

  4. Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46:1584–600.

    Article  CAS  Google Scholar 

  5. Crooke ST, Wang S, Vickers TA, Shen W, Liang X. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol. 2017;35:230–7.

    Article  CAS  Google Scholar 

  6. Miller CM, Harris EN. Antisense oligonucleotides: Treatment strategies and cellular internalization. RNA Dis. 2016;3:4.

    Google Scholar 

  7. Dias N, Stein CA. Antisense oligonucleotides: Basic concepts and mechanisms. Mol Cancer Ther. 2002;1:347–55.

    Article  CAS  Google Scholar 

  8. Gustincich S, Zucchelli S, Mallamaci A. The Yin and Yang of nucleic acid-based therapy in the brain. Prog Neurobio. 2017;155:194–211.

    Article  CAS  Google Scholar 

  9. Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22:823–33.

    Article  CAS  Google Scholar 

  10. Prakash TP, Graham MJ, Yu J, Carty R, Low A, Chappell A, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014;42:8796–807.

    Article  CAS  Google Scholar 

  11. Geary RS. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol. 2009;5:381–91.

    Article  CAS  Google Scholar 

  12. Braasch DA, Paroo Z, Constantinescu A, Ren G, Oz OK, Mason RP, et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett. 2004;14:1139–43.

    Article  CAS  Google Scholar 

  13. Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol. 2017;57:81–105.

    Article  CAS  Google Scholar 

  14. Evers MM, Toonen LJA, van Roon-Mom WMC. Antisense oligonucleotides in therapy for neuro-degenerative disorders. Adv Drug Deliv Rev. 2015;87:90–103.

    Article  CAS  Google Scholar 

  15. Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. TherAdvNeurolDisord. 2018;11:1–19.

    Google Scholar 

  16. Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017;25:1069–75.

    Article  CAS  Google Scholar 

  17. Vitravene Study Group. A randomized controlled clinical trial of intra-vitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol. 2002;133:467–74.

    Article  Google Scholar 

  18. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR; VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351:2805–16.

    Article  CAS  Google Scholar 

  19. Koo T, Wood MJ. Clinical trials using antisense oligonucleotides in Duchenne muscular dystrophy. Hum Gene Ther. 2013;24:479–88.

    Article  CAS  Google Scholar 

  20. Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy: Eteplirsen in DMD. Ann Neurol. 2016;79:257–71.

    Article  CAS  Google Scholar 

  21. Castro D, Iannaccone ST. Spinal muscular atrophy: therapeutic strategies. Curr Treat Options Neurol. 2014;16:316.

    Article  Google Scholar 

  22. Spinraza [package insert]. Cambridge, MA: Biogen Inc;2017.

  23. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377:1723–32.

    Article  CAS  Google Scholar 

  24. Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, Lannaccone ST, et al; CHERISH Study Group. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378:625–35.

    Article  CAS  Google Scholar 

  25. National Library of Medicine. 12 Studies found for: nusinersen. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=nusinersen&cntry=&state=&city=&dist . Accessed March 17, 2018.

  26. Hoy SM. Nusinersen: first global approval. Drugs. 2017;77:473–79.

    Article  CAS  Google Scholar 

  27. McGowan MP, Tardif J-C, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7:e49006.

    Article  CAS  Google Scholar 

  28. Thomas GS, Cromwell WC, Ali S, Chin W, Flaim JD, Davidson M. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk. J Am Coll Cardiol. 2013;62:2178–84.

    Article  CAS  Google Scholar 

  29. Richardson PG, Riches ML, Kernan NA, Brochstein JA, Mineishi S, Termuhlen AM, et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood. 2016;127:1656–65.

    Article  CAS  Google Scholar 

  30. Ackermann EJ, Guo S, Benson MD, Booten S, Freier S, Hughes SG, et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid. 2016;23:148–57.

    Article  CAS  Google Scholar 

  31. Zimmerman TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther. 2017;25:71–8.

    Article  Google Scholar 

  32. Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of Patisiran for familial amyloidotic polyneuropathy: A phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109.

    Article  Google Scholar 

  33. Winkler J, Stessl M, Amartey J, Noe CR. Off-target effects related to the phosphorothioate modification of nucleic acids. Chem Med Chem. 2010;5:1344–52.

    Article  CAS  Google Scholar 

  34. Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol Pathol. 2015;43:78–89.

    Article  Google Scholar 

  35. KYNAMRO — Mipomersen sodium injection, solution. Official Label: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203568s008lbl.pdf . Accessed 10 May, 2019.

  36. Crooke ST, Baker BF, Kwoh TJ, Cheng W, Schulz DJ, Xia S, et al. Integrated safety assessment of 22 -o-methoxyethyl chimeric antisense oligonucleotides in nonhuman primates and healthy human volunteers. Mol Ther. 2016;24:1771–82.

    Article  CAS  Google Scholar 

  37. Dalakas MC. Gene therapy for Duchenne muscular dystrophy: balancing good science, marginal efficacy, high emotions and excessive cost. Ther Adv Neurol Disord. 2017;10:293–6.

    Article  Google Scholar 

  38. Gellad WF, Kesselheim AS. Accelerated approval and expensive drugs — A challenging combination. N Engl J Med. 2017;376:2001–04.

    Article  Google Scholar 

  39. Editorial. Treating rare disorders: Time to act on unfair prices. Lancet Neurol. 2017;16:761.

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

Both authors were involved in planning the manuscript and review of literature. Initial draft: AVK; Final manuscript: AVK, DM. Both authors approved the final manuscript.

Corresponding author

Correspondence to Devendra Mishra.

Additional information

Competing interest

None stated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, A.V., Mishra, D. Antisense Oligonucleotides: A Unique Treatment Approach. Indian Pediatr 57, 165–171 (2020). https://doi.org/10.1007/s13312-020-1736-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13312-020-1736-7

Keywords

Navigation