Skip to main content

Advertisement

Log in

Antisense technology: an overview and prospectus

  • Review Article
  • Published:

From Nature Reviews Drug Discovery

View current issue Sign up to alerts

Abstract

Antisense technology is now beginning to deliver on its promise to treat diseases by targeting RNA. Nine single-stranded antisense oligonucleotide (ASO) drugs representing four chemical classes, two mechanisms of action and four routes of administration have been approved for commercial use, including the first RNA-targeted drug to be a major commercial success, nusinersen. Although all the approved drugs are for use in patients with rare diseases, many of the ASOs in late- and middle-stage clinical development are intended to treat patients with very common diseases. ASOs in development are showing substantial improvements in potency and performance based on advances in medicinal chemistry, understanding of molecular mechanisms and targeted delivery. Moreover, the ASOs in development include additional mechanisms of action and routes of administration such as aerosol and oral formulations. Here, we describe the key technological advances that have enabled this progress and discuss recent clinical trials that illustrate the impact of these advances on the performance of ASOs in a wide range of therapeutic applications. We also consider strategic issues such as target selection and provide perspectives on the future of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: An overview of progress in antisense technology.
Fig. 2: Advances in the medicinal chemistry of antisense technology.
Fig. 3: Post-hybridization mechanisms of antisense oligonucleotides.
Fig. 4: A major molecular mechanism of toxicity of phosphorothioate antisense oligonucleotides.
Fig. 5: Local delivery of phosphorothioate antisense oligonucleotides.
Fig. 6: Schematic representation of RNA degradation mediated by RNase H1 or AGO2.

Similar content being viewed by others

References

  1. Zamecnik, P. C. & Stephenson, M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl Acad. Sci. USA 75, 280–284 (1978). This paper introduces the concept of ASO therapeutics.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stephenson, M. L. & Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl Acad. Sci. USA 75, 285–288 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Crooke, S. T. Progress toward oligonucleotide therapeutics: pharmacodynamic properties. FASEB J. 7, 533–539 (1993).

    CAS  PubMed  Google Scholar 

  4. Crooke, S. T. Antisense therapeutics. Biotechnol. Genet. Eng. Rev. 15, 121–157 (1998).

    CAS  PubMed  Google Scholar 

  5. Crooke, S. T., Vickers, T. A., Lima, W. F. & Wu, H.-J. in Antisense Drug Technology: Principles, Strategies, and Applications (ed. Crooke, S. T.) 3–46 (CRC, 2008).

  6. Hua, Y., Vickers, T. A., Baker, B. F., Bennett, C. F. & Krainer, A. R. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 5, e73 (2007). This paper shows how occupancy-based ASOs that do not mediate degradation by RNase H1 can be used to modulate splicing of a gene coding for the protein SMN, providing the basis for the successful development of a strategy to treat patients with SMA.

    PubMed  PubMed Central  Google Scholar 

  7. Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018). This is a comprehensive review of antisense approaches targeting RNA for the treatment of various diseases.

    CAS  PubMed  Google Scholar 

  8. Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019). This review provides a comprehensive description of advances and outstanding questions with the application of siRNAs as therapeutics.

    CAS  PubMed  Google Scholar 

  10. Swayze, E. E. & Bhat, B. in Antisense Drug Technology: Principles, Strategies, and Applications Ch. 6 (ed. Crooke, S. T.) 143–182 (CRC, 2008).

  11. Monia, B. P. et al. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 (1993). This paper presents the initial pharmacological characterization of PS 2-MOE chimeric ASOs.

    CAS  PubMed  Google Scholar 

  12. Yu, D. et al. Hybrid oligonucleotides: synthesis, biophysical properties, stability studies, and biological activity. Bioorg. Med. Chem. 4, 1685–1692 (1996).

    CAS  PubMed  Google Scholar 

  13. Kurreck, J., Wyszko, E., Gillen, C. & Erdmann, V. A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 30, 1911–1918 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wan, W. B. & Seth, P. P. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 59, 9645–9667 (2016).

    CAS  PubMed  Google Scholar 

  15. Freier, S. M. & Altmann, K. H. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 25, 4429–4443 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Geary, R. S., Norris, D., Yu, R. & Bennett, C. F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87, 46–51 (2015).

    CAS  PubMed  Google Scholar 

  17. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    CAS  PubMed  Google Scholar 

  18. Sands, H. et al. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol. Pharmacol. 45, 932–943 (1994).

    CAS  PubMed  Google Scholar 

  19. Geary, R. S. et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J. Pharmacol. Exp. Ther. 296, 890–897 (2001).

    CAS  PubMed  Google Scholar 

  20. Liang, X. H., Sun, H., Shen, W. & Crooke, S. T. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res. 43, 2927–2945 (2015). This is the first paper to systematically identify cellular proteins to which PS ASOs bind.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, S., Sun, H., Tanowitz, M., Liang, X. H. & Crooke, S. T. Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides. Nucleic Acids Res. 44, 7314–7330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, C. M. et al. Stabilin-1 and stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res. 44, 2782–2794 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Wang, S. et al. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res. 46, 3579–3594 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang, X. H. et al. Golgi-endosome transport mediated by M6PR facilitates release of antisense oligonucleotides from endosomes. Nucleic Acids Res. 48, 1372–1391 (2020). This is one of a series of papers describing protein-mediated PS ASO intracellular trafficking and endosomal release.

    CAS  PubMed  Google Scholar 

  25. Crooke, S. T., Vickers, T. A. & Liang, X. H. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 48, 5235–5253 (2020). This paper reviews the proteins to which PS ASOs bind and the effects of those interactions on the behaviours of both PS ASOs and the proteins.

    PubMed  PubMed Central  Google Scholar 

  26. Iversen, P. L. Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther. 3, 235–238 (2001).

    CAS  PubMed  Google Scholar 

  27. Iversen, P. L. in Antisense Drug Technology: Principles, Strategies, and Applications (ed. Crooke, S. T.) 565–582 (CRC, 2008).

  28. Aartsma-Rus, A. & Corey, D. R. The 10th oligonucleotide therapy approved: golodirsen for duchenne muscular dystrophy. Nucleic Acid. Ther. 30, 67–70 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dhillon, S. Viltolarsen: first approval. Drugs 80, 1027–1031 (2020).

    CAS  PubMed  Google Scholar 

  30. Monia, B. P., Johnston, J. F., Sasmor, H. & Cummins, L. L. Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras. J. Biol. Chem. 271, 14533–14540 (1996).

    CAS  PubMed  Google Scholar 

  31. Prakash, T. P. et al. Comparing in vitro and in vivo activity of 2′-O-[2-(methylamino)-2-oxoethyl]- and 2′-O-methoxyethyl-modified antisense oligonucleotides. J. Med. Chem. 51, 2766–2776 (2008).

    CAS  PubMed  Google Scholar 

  32. Stix, G. Shutting down a gene. Antisense drug wins approval. Sci. Am. 279, 46–50 (1998).

    CAS  PubMed  Google Scholar 

  33. Mansoor, M. & Melendez, A. J. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul. Syst. Biol 2, 275–295 (2008).

    CAS  Google Scholar 

  34. Monia, B. P. First- and second-generation antisense inhibitors targeted to human c-raf kinase: in vitro and in vivo studies. Anticancer Drug Des. 12, 327–339 (1997).

    CAS  PubMed  Google Scholar 

  35. Henry, S. P. et al. in Antisense Drug Technology-Principles, Strategies, and Applications (ed. Crooke, S. T.) 327–364 (CRC, 2008).

  36. Hong, D. et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl Med. 7, 314ra185 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Chowdhury, S. et al. A phase I dose escalation, safety and pharmacokinetic (PK) study of AZD5312 (IONIS-ARRx), a first-in-class generation 2.5 antisense oligonucleotide targeting the androgen receptor (AR). Eur. J. Cancer 69, S145 (2016).

    Google Scholar 

  38. Seth, P. P. et al. Design, synthesis and evaluation of constrained methoxyethyl (cMOE) and constrained ethyl (cEt) nucleoside analogs. Nucleic Acids Symp. Ser. 52, 553–554 (2008). This paper introduces the 2′-cEt modification.

    CAS  Google Scholar 

  39. Simoes-Wust, A. P. et al. A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis. Oligonucleotides 14, 199–209 (2004).

    PubMed  Google Scholar 

  40. Sugo, T. et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J. Control. Release 237, 1–13 (2016).

    CAS  PubMed  Google Scholar 

  41. Ammala, C. et al. Targeted delivery of antisense oligonucleotides to pancreatic beta-cells. Sci. Adv. 4, eaat3386 (2018). This paper shows that ASOs can be specifically delivered into pancreatic β-cells through GLP1 conjugation in vitro and in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ostergaard, M. E. et al. Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Res. 47, 6045–6058 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014). This paper shows that GalNAc conjugation dramatically enhances ASO potency in vivo by selective targeting to hepatocytes through the cell-surface asialoglycoprotein receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014). This paper shows that GalNAc conjugation enables siRNA delivery to the liver through interactions with the GalNAc asialoglycoprotein receptor, which is highly expressed on hepatocytes.

    CAS  PubMed  Google Scholar 

  45. Shen, W. et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640–650 (2019). This study unveils a detailed toxic mechanism mediated by PS-ASO–protein interactions and how straightforward chemical modification can mitigate toxicity.

    CAS  PubMed  Google Scholar 

  46. Migawa, M. T. et al. Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Res. 47, 5465–5479 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Crooke, S. T., Seth, P. P., Vickers, T. A. & Liang, X. H. The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these agents. J. Am. Chem. Soc. 142, 14754–14771 (2020).

    CAS  PubMed  Google Scholar 

  48. Crooke, S. T., Liang, X.-H., Crooke, R. M., Baker, B. F. & Geary, R. S. Antisense drug discovery and development technology considered in a pharmacological context. Biochem. Pharmacol. https://doi.org/10.1016/j.bcp.2020.114196 (2020). This paper provides a comprehensive review of RNA-targeted drug discovery with a focus on molecular mechanisms of action, cellular pharmacokinetic and toxicological effects, including a discussion of the mechanistic differences between RNase-H1- and AGO2-induced cleavage mediated by ASOs.

    Article  PubMed  Google Scholar 

  49. Lima, W. F. et al. Single-stranded siRNAs activate RNAi in animals. Cell 150, 883–894 (2012). This paper shows that chemically modified single-stranded oligonucleotides can act as siRNAs and activate the RNA-induced silencing complex (RISC) pathway in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  50. Ward, A. J., Norrbom, M., Chun, S., Bennett, C. F. & Rigo, F. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res. 42, 5871–5879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang, X. H., Nichols, J. G., Hsu, C. W., Vickers, T. A. & Crooke, S. T. mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway. Nucleic Acids Res. 47, 6900–6916 (2019). This is one of a series of papers describing the designs of PS ASOs that can cause target reduction via non-RNase-H1 mechanisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Melton, D. A. Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl Acad. Sci. USA 82, 144–148 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Baker, B. F. et al. 2′-O-(2-methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J. Biol. Chem. 272, 11994–12000 (1997).

    CAS  PubMed  Google Scholar 

  54. Iversen, P. L., Arora, V., Acker, A. J., Mason, D. H. & Devi, G. R. Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a phase I safety study in humans. Clin. Cancer Res. 9, 2510–2519 (2003).

    CAS  PubMed  Google Scholar 

  55. Baker, B. F. et al. Oligonucleotide-europium complex conjugate designed to cleave the 5′ cap structure of the ICAM-1 transcript potentiates antisense activity in cells. Nucleic Acids Res. 27, 1547–1551 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vickers, T. A., Wyatt, J. R., Burckin, T., Bennett, C. F. & Freier, S. M. Fully modified 2′ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res. 29, 1293–1299 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hodges, D. & Crooke, S. T. Inhibition of splicing of wild-type and mutated luciferase-adenovirus pre-mRNAs by antisense oligonucleotides. Mol. Pharmacol. 48, 905–918 (1995). This is the first paper to explore the RNA sequence and structural features that determine the efficiency of ASO-induced alternative splicing.

    CAS  PubMed  Google Scholar 

  58. Finkel, R. S. et al. Nusinersen versus Sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017). This paper reports a clinical trial showing that nusinersen, an ASO that modulates the splicing of SMN2, can safely improve motor neuron function in patients with SMA.

    CAS  PubMed  Google Scholar 

  59. Charleston, J. S. et al. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology 90, e2146–e2154 (2018).

    CAS  PubMed  Google Scholar 

  60. Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Darras, B. T. et al. An integrated safety analysis of infants and children with symptomatic spinal muscular atrophy (SMA) treated with nusinersen in seven clinical trials. CNS Drugs 33, 919–932 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Orom, U. A., Kauppinen, S. & Lund, A. H. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372, 137–141 (2006).

    CAS  PubMed  Google Scholar 

  63. De Santi, C. et al. Precise targeting of miRNA sites restores CFTR activity in CF bronchial epithelial cells. Mol. Ther. 28, 1190–1199 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Stenvang, J., Petri, A., Lindow, M., Obad, S. & Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 3, 1 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Ree, M. H. et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 43, 102–113 (2016).

    PubMed  Google Scholar 

  66. Liang, X.-H. et al. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotech. 34, 875–880 (2016). This paper shows that PS ASOs can be designed to selectively increase the translation of specific proteins.

    CAS  Google Scholar 

  67. Liang, X. H. et al. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res. 45, 9528–9546 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, L. et al. Antisense suppression of the nonsense mediated decay factor Upf3b as a potential treatment for diseases caused by nonsense mutations. Genome Biol. 19, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Nomakuchi, T. T., Rigo, F., Aznarez, I. & Krainer, A. R. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34, 164–166 (2016).

    CAS  PubMed  Google Scholar 

  70. Li, L. C. et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl Acad. Sci. USA 103, 17337–17342 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Janowski, B. A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol. 3, 166–173 (2007).

    CAS  PubMed  Google Scholar 

  72. Liang, X. H., Nichols, J. G., Sun, H. & Crooke, S. T. Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Nucleic Acids Res. 46, 293–313 (2018).

    CAS  PubMed  Google Scholar 

  73. Frank, D. E. et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology 94, e2270–e2282 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cirak, S. et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378, 595–605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Levin, A. A., Yu, R. Z. & Geary, R. S. in Antisense Drug Technology: Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 183–216 (CRC, 2008). This paper establishes the basic principles related to various adverse effects of PS ASOs.

  76. Gaus, H. J. et al. Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res. 47, 1110–1122 (2019).

    CAS  PubMed  Google Scholar 

  77. Geary, R. S., Baker, B. F. & Crooke, S. T. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro((R))): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin. Pharmacokinet. 54, 133–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Geary, R. S., Yu, R. Z., Siwkoswki, A., and Levin, A. A. in Antisense Drug Technology: Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 305–326 (CRC, 2008).

  79. Graham, M. J. et al. Hepatic distribution of a phosphorothioate oligodeoxynucleotide within rodents following intravenous administration. Biochem. Pharmacol. 62, 297–306 (2001). This is the first paper to define the sub-organ pharmacokinetics of PS ASOs and is also the first systematic sub-organ pharmacokinetic study of any drug.

    CAS  PubMed  Google Scholar 

  80. Crooke, S. T. et al. Integrated safety assessment of 2′-O-methoxyethyl chimeric antisense oligonucleotides in nonhuman primates and healthy human volunteers. Mol. Ther. 24, 1771–1782 (2016). This is the first publication of an integrated safety database for a chemical class of PS ASOs.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Crooke, S. T. et al. The effects of 2′-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid. Ther. 27, 121–129 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Crooke, S. T. et al. The effects of 2′-O-methoxyethyl oligonucleotides on renal function in humans. Nucleic Acid. Ther. 28, 10–22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018). This paper reports a clinical trial showing that inotersen improved the course of neurological disease and quality of life in patients with hATTR.

    CAS  PubMed  Google Scholar 

  84. Witztum, J. L. et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med. 381, 531–542 (2019). This paper reports a clinical trial showing that volanesorsen lowered triglyceride levels to <750 mg dl–1 in 77% of patients with FCS.

    CAS  PubMed  Google Scholar 

  85. Hong, D. S. et al. A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. Clin. Cancer Res. 17, 6582–6591 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Crooke, S. T. et al. Integrated assessment of the clinical performance of GalNAc3-conjugated 2′-O-methoxyethyl chimeric antisense oligonucleotides: I. human volunteer experience. Nucleic Acid. Ther. 29, 16–32 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gouni-Berthold, I. Significant quality of life improvement observed in a patient with FCS associated with a marked reduction in triglycerides. J. Endocr. Soc. 4, bvz035 (2020).

    PubMed  Google Scholar 

  88. Yuen, M. F. et al. Results after 12 weeks treatment of multiple doses of GSK3389404 in chronic hepatitis B (CHB) subjects on stable nucleos(t)ide therapy in a phase 2a double-blind, placebo-controlled study. Hepatology 70, 433A–434A (2019).

    Google Scholar 

  89. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020). This paper describes the results of a large phase IIb study in patients with prior cardiovascular events treated with pelacarsen, a PS 2-MOE chimeric ASO that reduces levels of Lp(a).

    CAS  PubMed  Google Scholar 

  90. Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    CAS  PubMed  Google Scholar 

  91. Hagedorn, P. H. et al. Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov. Today 23, 101–114 (2018).

    CAS  PubMed  Google Scholar 

  92. Vickers, T. A., Rahdar, M., Prakash, T. P. & Crooke, S. T. Kinetic and subcellular analysis of PS-ASO/protein interactions with P54nrb and RNase H1. Nucleic Acids Res. 47, 10865–10880 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, Y. et al. Enhanced potency of GalNAc-conjugated antisense oligonucleotides in hepatocellular cancer models. Mol. Ther. 27, 1547–1557 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tillman, L. G., Geary, R. S. & Hardee, G. E. Oral delivery of antisense oligonucleotides in man. J. Pharm. Sci. 97, 225–236 (2008).

    CAS  PubMed  Google Scholar 

  95. Yu, R. Z. et al. Investigation of oral delivery of GalNac3 conjugated antisense oligonucleotides in rats. in DIA/FDA Oligonucleotide-Based Therapeutics Conference (FDA and DIA, 2019). This study reports that a PS MOE GalNAc-conjugated ASO can be delivered orally.

  96. Gennemark, P. et al. Abstract 13307: an oral antisense oligonucleotide for PCSK9 inhibition in humans. Circulation 142, A13307–A13307 (2020).

    Google Scholar 

  97. Chiriboga, C. A. et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86, 890–897 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    CAS  PubMed  Google Scholar 

  99. Mercuri, E. et al. Nusinersen versus Sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378, 625–635 (2018).

    CAS  PubMed  Google Scholar 

  100. Karras, J. G. et al. Anti-inflammatory activity of inhaled IL-4 receptor-alpha antisense oligonucleotide in mice. Am. J. Respir. Cell Mol. Biol. 36, 276–285 (2007).

    CAS  PubMed  Google Scholar 

  101. Zhao, C. et al. Antisense oligonucleotide targeting of mRNAs encoding ENaC subunits alpha, beta, and gamma improves cystic fibrosis-like disease in mice. J. Cyst. Fibros. 18, 334–341 (2019).

    CAS  PubMed  Google Scholar 

  102. Crosby, J. R. et al. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice. J. Cyst. Fibros. 16, 671–680 (2017).

    CAS  PubMed  Google Scholar 

  103. Miner, P., Wedel, M., Bane, B. & Bradley, J. An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremitting pouchitis. Aliment. Pharmacol. Ther. 19, 281–286 (2004).

    CAS  PubMed  Google Scholar 

  104. Greuter, T. & Rogler, G. Alicaforsen in the treatment of pouchitis. Immunotherapy 9, 1143–1152 (2017).

    CAS  PubMed  Google Scholar 

  105. Grillone, L. R. & Lanz, R. Fomivirsen. Drugs Today 37, 245–255 (2001).

    CAS  Google Scholar 

  106. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    CAS  PubMed  Google Scholar 

  107. Montes, J. et al. Nusinersen improves walking distance and reduces fatigue in later-onset spinal muscular atrophy. Muscle Nerve 60, 409–414 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. De Vivo, D. C. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul. Disord. 29, 842–856 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    CAS  PubMed  Google Scholar 

  110. Miller, T. et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 383, 109–119 (2020).

    CAS  PubMed  Google Scholar 

  111. Cudkowicz, M. et al. Tofersen, a SOD1 antisense oligonucleotide in participants with ALS – results from a multiple dose study (657). Neurology 94 (Suppl. 15), 657 (2020).

    Google Scholar 

  112. Hummerich, H. et al. Distribution of trinucleotide repeat sequences across a 2 Mbp region containing the Huntington’s disease gene. Hum. Mol. Genet. 3, 73–78 (1994).

    CAS  PubMed  Google Scholar 

  113. Tabrizi, S. J. et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 380, 2307–2316 (2019).

    CAS  PubMed  Google Scholar 

  114. Panzara, M. Stereopure nucleic acid therapies in development for the treatment of genetic neurological diseases. Neurotherapeutics 14, 821–822 (2017).

    Google Scholar 

  115. Kesselheim, A. S. & Avorn, J. Approving a problematic muscular dystrophy drug: implications for FDA policy. JAMA 316, 2357–2358 (2016).

    PubMed  Google Scholar 

  116. Clemens, P. R. et al. Safety, tolerability, and efficacy of viltolarsen in boys with duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 77, 982–991 (2020).

    PubMed  Google Scholar 

  117. Wagner, K. et al. O.28. Safety and tolerability of suvodirsen (WVE-210201) in patients with Duchenne muscular dystrophy: results from a phase 1 clinical trial. Neuromuscul. Disord. 29, S124 (2019).

    Google Scholar 

  118. Flora, G. D. & Nayak, M. K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr. Pharm. Des. 25, 4063–4084 (2019).

    CAS  PubMed  Google Scholar 

  119. Goldberg, A. C. & Schonfeld, G. Effects of diet on lipoprotein metabolism. Annu. Rev. Nutr. 5, 195–212 (1985).

    CAS  PubMed  Google Scholar 

  120. Castro-Barquero, S., Ruiz-León, A. M., Sierra-Pérez, M., Estruch, R. & Casas, R. Dietary strategies for metabolic syndrome: a comprehensive review. Nutrients 12, 2983 (2020).

    CAS  PubMed Central  Google Scholar 

  121. Ying, H., Wang, J., Shen, Z., Wang, M. & Zhou, B. Impact of lowering low-density lipoprotein cholesterol with contemporary lipid-lowering medicines on cognitive function: a systematic review and meta-analysis. Cardiovasc. Drugs Ther. 35, 153–166 (2020).

    PubMed  Google Scholar 

  122. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010). This paper presents clinical trial results showing that mipomersen can significantly lower LDL cholesterol levels in patients with HoFH.

    CAS  PubMed  Google Scholar 

  123. Santos, R. D., Raal, F. J., Donovan, J. M. & Cromwell, W. C. Mipomersen preferentially reduces small low-density lipoprotein particle number in patients with hypercholesterolemia. J. Clin. Lipidol. 9, 201–209 (2015).

    PubMed  Google Scholar 

  124. Sobati, S. et al. PCSK9: a key target for the treatment of cardiovascular disease (CVD). Adv. Pharm. Bull. 10, 502–511 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Visser, M. E., Witztum, J. L., Stroes, E. S. & Kastelein, J. J. Antisense oligonucleotides for the treatment of dyslipidaemia. Eur. Heart J. 33, 1451–1458 (2012).

    CAS  PubMed  Google Scholar 

  126. Schmitz, J. & Gouni-Berthold, I. Anti-PCSK9 antibodies: a new era in the treatment of dyslipidemia. Curr. Pharm. Des. 23, 1484–1494 (2017).

    CAS  PubMed  Google Scholar 

  127. German, C. A. & Shapiro, M. D. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs 34, 1–9 (2020).

    CAS  PubMed  Google Scholar 

  128. Kosmas, C. E. et al. Inclisiran for the treatment of cardiovascular disease: a short review on the emerging data and therapeutic potential. Ther. Clin. Risk Manag. 16, 1031–1037 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tsimikas, S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J. Am. Coll. Cardiol. 69, 692–711 (2017).

    CAS  PubMed  Google Scholar 

  130. Chait, A. & Eckel, R. H. The chylomicronemia syndrome is most often multifactorial: a narrative review of causes and treatment. Ann. Intern. Med. 170, 626–634 (2019).

    PubMed  Google Scholar 

  131. Varbo, A. et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J. Am. Coll. Cardiol. 61, 427–436 (2013).

    CAS  PubMed  Google Scholar 

  132. Johansen, C. T., Kathiresan, S. & Hegele, R. A. Genetic determinants of plasma triglycerides. J. Lipid Res. 52, 189–206 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Digenio, A. et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care 39, 1408–1415 (2016).

    CAS  PubMed  Google Scholar 

  134. Milonas, D. & Tziomalos, K. Experimental therapies targeting apolipoprotein C-III for the treatment of hyperlipidemia — spotlight on volanesorsen. Expert Opin. Investig. Drugs 28, 389–394 (2019).

    CAS  PubMed  Google Scholar 

  135. Tardif, J.-C. Antisense APOC3 oligonucleotide lowers triglyceride and atherogenic lipoproteins. Presented at the European Society of Cardiology Congress (2020).

  136. Loomba, R. et al. Novel antisense inhibition of diacylglycerol O-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 5, 829–838 (2020).

    PubMed  Google Scholar 

  137. Buller, H. R., Gailani, D. & Weitz, J. I. Factor XI antisense oligonucleotide for venous thrombosis. N. Engl. J. Med. 372, 1672 (2015).

    PubMed  Google Scholar 

  138. Buller, H. R. et al. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 372, 232–240 (2015).

    PubMed  Google Scholar 

  139. Cideciyan, A. V. et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat. Med. 25, 225–228 (2019).

    CAS  PubMed  Google Scholar 

  140. MacLeod, A. R. & Crooke, S. T. RNA therapeutics in oncology: advances, challenges, and future directions. J. Clin. Pharmacol. 57 (Suppl. 10), S43–S59 (2017).

    CAS  PubMed  Google Scholar 

  141. Reilley, M. J. et al. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J. Immunother. Cancer 6, 119 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Garzon, R., Fabbri, M., Cimmino, A., Calin, G. A. & Croce, C. M. MicroRNA expression and function in cancer. Trends Mol. Med. 12, 580–587 (2006).

    CAS  PubMed  Google Scholar 

  143. Anastasiadou, E. et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo. Clin. Cancer Res. 27, 1139–1149 (2020).

    PubMed  PubMed Central  Google Scholar 

  144. Querfeld, C. et al. Phase 1 study of the safety and efficacy of MRG-106, a synthetic inhibitor of microRNA-155, in CTCL patients. Blood 130 (Suppl. 1), 820 (2017).

    Google Scholar 

  145. James, A. M. et al. SOLAR: a phase 2, global, randomized, active comparator study to investigate the efficacy and safety of cobomarsen in subjects with mycosis fungoides (MF). Hemato. Oncol. 37, 562–563 (2019).

    Google Scholar 

  146. Fuertes, T., Ramiro, A. R. & de Yebenes, V. G. miRNA-based therapies in B cell non-hodgkin lymphoma. Trends Immunol. 41, 932–947 (2020).

    CAS  PubMed  Google Scholar 

  147. Yuen, M. F. et al. Phase 2a, randomized, double-blind, placebocontrolled study of an antisense inhibitor (ISIS 505358) in treatment-naïve chronic hepatitis B (CHB) patients: safety and antiviral efficacy. Hepatology 70, 437A–438A (2019).

    Google Scholar 

  148. Gane, E. J. et al. Interim results of a phase 1 study of RO7062931, a novel liver-targeted single-stranded oligonucleotide (SSO) with locked nucleic acid (LNA) that targets HBV transcripts. Hepatology 70, 436A (2019).

    Google Scholar 

  149. Feng, S. et al. Liver targeted single stranded (SSO) oligonucleotide RO7062931 is safe and well tolerated in Chinese healthy volunteers (HVs) with similar pharmacokinetic profile to non-Chinese HVs. Hepatol. Int. https://doi.org/10.1007/s12072-020-10030-4 (2020).

  150. Gregory, S. A. & Karras, J. G. in Antisense Drug Technology: Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 665–697 (CRC, 2008).

  151. Sermet-Gaudelus, I. et al. Antisense oligonucleotide eluforsen improves CFTR function in F508del cystic fibrosis. J. Cyst. Fibros. 18, 536–542 (2019).

    CAS  PubMed  Google Scholar 

  152. Drevinek, P. et al. Antisense oligonucleotide eluforsen is safe and improves respiratory symptoms in F508DEL cystic fibrosis. J. Cyst. Fibros. 19, 99–107 (2020).

    CAS  PubMed  Google Scholar 

  153. Zamecnik, P. C., Raychowdhury, M. K., Tabatadze, D. R. & Cantiello, H. F. Reversal of cystic fibrosis phenotype in a cultured Delta508 cystic fibrosis transmembrane conductance regulator cell line by oligonucleotide insertion. Proc. Natl Acad. Sci. USA 101, 8150–8155 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Beumer, W. et al. Evaluation of eluforsen, a novel RNA oligonucleotide for restoration of CFTR function in in vitro and murine models of p.Phe508del cystic fibrosis. PLoS ONE 14, e0219182 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bell, D. et al. Safety, tolerability, and target engagement demonstrated with inhaled αENaC antisense oligonucleotide (ION-827359) in a phase 1 healthy volunteer study. Presented at the North American Cystic Fibrosis Conference (2020).

  156. Michaels, W. E., Bridges, R. J. & Hastings, M. L. Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res. 48, 7454–7467 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Gertz, M. A. et al. Inotersen for the treatment of adults with polyneuropathy caused by hereditary transthyretin-mediated amyloidosis. Expert Rev. Clin. Pharmacol. 12, 701–711 (2019).

    CAS  PubMed  Google Scholar 

  158. Luigetti, M., Romano, A., Di Paolantonio, A., Bisogni, G. & Sabatelli, M. Diagnosis and treatment of hereditary transthyretin amyloidosis (hATTR) polyneuropathy: current perspectives on improving patient care. Ther. Clin. Risk Manag. 16, 109–123 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Narayanan, P. et al. Underlying immune disorder may predispose some transthyretin amyloidosis subjects to inotersen-mediated thrombocytopenia. Nucleic Acid Ther. 30, 94–103 (2020).

    CAS  PubMed  Google Scholar 

  160. Brannagan, T. H. et al. Early data on long-term efficacy and safety of inotersen in patients with hereditary transthyretin amyloidosis: a 2-year update from the open-label extension of the NEURO-TTR trial. Eur. J. Neurol. 27, 1374–1381 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Viney, N. J. et al. Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data. ESC Heart Fail. 8, 652–661 (2020).

    PubMed  PubMed Central  Google Scholar 

  162. Lima, W., Wu, H. & Crooke, S. T. in Antisense Drug Technology: Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 47–74 (CRC, 2008). This paper summarizes the properties of the human RNase H enzyme.

  163. Manoharan, M. & Rajeev, K. G. in Antisense Drug Technology: Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 437–464 (CRC, 2008).

  164. Manoharan, M. et al. Unique gene-silencing and structural properties of 2′-fluoro-modified siRNAs. Angew. Chem. Int. Ed. Engl. 50, 2284–2288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shukla, S., Sumaria, C. S. & Pradeepkumar, P. I. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. ChemMedChem 5, 328–349 (2010).

    CAS  PubMed  Google Scholar 

  166. Sigova, A. & Zamore, O. D. in Antisense Drug Technology: Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 75–88 (CRC, 2008).

  167. Chernikov, I. V., Vlassov, V. V. & Chernolovskaya, E. L. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol. 10, 444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tang, X. et al. Therapeutic prospects of mRNA-based gene therapy for glioblastoma. Front. Oncol. 9, 1208 (2019).

    PubMed  PubMed Central  Google Scholar 

  169. Anguela, X. M. & High, K. A. Entering the modern era of gene therapy. Annu. Rev. Med. 70, 273–288 (2019).

    CAS  PubMed  Google Scholar 

  170. Lima, W. F., De Hoyos, C. L., Liang, X. H. & Crooke, S. T. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Res. 44, 3351–3363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Vickers, T. A. et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem. 278, 7108–7118 (2003). This study shows that the activities of ASOs and siRNAs are comparable in cells.

    CAS  PubMed  Google Scholar 

  172. Vickers, T. A. et al. Off-target and a portion of target-specific siRNA mediated mRNA degradation is Ago2 ‘Slicer’ independent and can be mediated by Ago1. Nucleic Acids Res. 37, 6927–6941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Lima, W. F., Vickers, T. A., Nichols, J., Li, C. & Crooke, S. T. Defining the factors that contribute to on-target specificity of antisense oligonucleotides. PLoS ONE 9, e101752 (2014). This paper characterizes the features of RNAs and ASOs that are associated with off-target cleavage.

    PubMed  PubMed Central  Google Scholar 

  174. Vickers, T. A. & Crooke, S. T. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. PLoS ONE 9, e108625 (2014).

    PubMed  PubMed Central  Google Scholar 

  175. Khan, A. A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 27, 549–555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Liang, X. H., Hart, C. E. & Crooke, S. T. Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. Biochim. Biophys. Acta 1829, 455–468 (2013).

    CAS  PubMed  Google Scholar 

  177. Liang, X. H. & Crooke, S. T. RNA helicase A is not required for RISC activity. Biochim. Biophys. Acta 1829, 1092–1101 (2013).

    CAS  PubMed  Google Scholar 

  178. Michlewski, G. & Caceres, J. F. Post-transcriptional control of miRNA biogenesis. RNA 25, 1–16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Springer, A. D. & Dowdy, S. F. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid. Ther. 28, 109–118 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Gale, J. D. et al. A placebo-controlled study of PF-06473871 (anti-connective tissue growth factor antisense oligonucleotide) in reducing hypertrophic skin scarring. Plast. Reconstr. Surg. Glob. Open 6, e1861 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol. 133, 467–474 (2002).

    Google Scholar 

  182. Vitravene Study Group. Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol. 133, 484–498 (2002).

    Google Scholar 

  183. Vitravene Study Group. Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS. Am. J. Ophthalmol. 133, 475–483 (2002).

    Google Scholar 

  184. Duell, P. B. & Jialal, I. Modern management of familial hypercholesterolemia. Metab. Syndr. Relat. Disord. 14, 463–467 (2016).

    CAS  PubMed  Google Scholar 

  185. Mendell, J. R. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74, 637–647 (2013).

    CAS  PubMed  Google Scholar 

  186. Raal, F. J. et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation 124, 2202–2207 (2011).

    CAS  PubMed  Google Scholar 

  187. Miller, T. M. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 12, 435–442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Goemans, N. M. et al. Long-term efficacy, safety, and pharmacokinetics of drisapersen in duchenne muscular dystrophy: results from an open-label extension study. PLoS ONE 11, e0161955 (2016).

    PubMed  PubMed Central  Google Scholar 

  189. Voit, T. et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 13, 987–996 (2014).

    CAS  PubMed  Google Scholar 

  190. Mignon, L. et al. ISIS-DMPKRx in healthy volunteers: a placebo-controlled, randomized, single ascending-dose phase 1 study (P3.166). Neurology 86 (Suppl. 16), P3.166 (2016).

    Google Scholar 

  191. Gaudet, D. et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur. Heart J. 41, 3936–3945 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Graham, M. J. et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med. 377, 222–232 (2017).

    CAS  PubMed  Google Scholar 

  193. Alexander, V. J. et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur. Heart J. 40, 2785–2796 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Grossman, T. R. et al. Reduction in ocular complement factor B protein in mice and monkeys by systemic administration of factor B antisense oligonucleotide. Mol. Vis. 23, 561–571 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Täubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2020).

    PubMed Central  Google Scholar 

  196. Morgan, E. S. et al. Antisense inhibition of glucagon receptor by IONIS-GCGRRx improves type 2 diabetes without increase in hepatic glycogen content in patients with type 2 diabetes on stable metformin therapy. Diabetes Care 42, 585–593 (2019).

    CAS  PubMed  Google Scholar 

  197. Trainer, P. J. et al. A randomised, open-label, parallel group phase 2 study of antisense oligonucleotide therapy in acromegaly. Eur. J. Endocrinol. 179, 97–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Digenio, A. et al. Antisense inhibition of protein tyrosine phosphatase 1B with IONIS-PTP-1BRx improves insulin sensitivity and reduces weight in overweight patients with type 2 diabetes. Diabetes Care 41, 807–814 (2018).

    CAS  PubMed  Google Scholar 

  199. Bhanot, S. et al. ISIS-GCCRRX, a novel glucocorticoid (GC) receptor antisense drug reduces cholesterol and triglycerides and attenuates dexamethasone induced hepatic insulin resistance without systemic GC antagonism in normal subjects. Diabetologia 56, S282 (2013).

    Google Scholar 

  200. Pfeiffer, N. et al. First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-beta2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery. PLoS ONE 12, e0188899 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Chi, K. N. et al. A phase I dose-escalation study of apatorsen (OGX-427), an antisense inhibitor targeting heat shock protein 27 (Hsp27), in patients with castration-resistant prostate cancer and other advanced cancers. Ann. Oncol. 27, 1116–1122 (2016).

    CAS  PubMed  Google Scholar 

  202. Saad, F. et al. Randomized phase II trial of custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin. Cancer Res. 17, 5765–5773 (2011).

    CAS  PubMed  Google Scholar 

  203. Bianchini, D. et al. First-in-human phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide to exon 4 of the androgen receptor mRNA in patients with castration-resistant prostate cancer. Br. J. Cancer 109, 2579–2586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. van der Ree, M. H. et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 18, 709–717 (2017).

    Google Scholar 

  205. Limmroth, V., Barkhof, F., Desem, N., Diamond, M. P. & Tachas, G. CD49d antisense drug ATL1102 reduces disease activity in patients with relapsing-remitting MS. Neurology 83, 1780–1788 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sands, B. E. et al. Mongersen (GED-0301) for active Crohn’s disease: results of a phase 3 study. Am. J. Gastroenterol. 115, 738–745 (2020).

    PubMed  Google Scholar 

  207. Monteleone, G. & Pallone, F. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N. Engl. J. Med. 372, 2461 (2015).

    CAS  PubMed  Google Scholar 

  208. Sewell, K. L. et al. Phase I trial of ISIS 104838, a 2′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha. J. Pharmacol. Exp. Ther. 303, 1334–1343 (2002).

    CAS  PubMed  Google Scholar 

  209. Cohn, D. M. et al. Antisense inhibition of prekallikrein to control hereditary angioedema. N. Engl. J. Med. 383, 1242–1247 (2020).

    CAS  PubMed  Google Scholar 

  210. Liu, H. et al. Targeting the IL-17 receptor using liposomal spherical nucleic acids as topical therapy for psoriasis. J. Invest. Dermatol. 140, 435–444.e434 (2020).

    CAS  PubMed  Google Scholar 

  211. Ferrone, J. D. et al. IONIS-PKKRx a novel antisense inhibitor of prekallikrein and bradykinin production. Nucleic Acid. Ther. 29, 82–91 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. van Meer, L. et al. Renal effects of antisense-mediated inhibition of SGLT2. J. Pharmacol. Exp. Ther. 359, 280–289 (2016).

    PubMed  Google Scholar 

  213. Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug Discov. 16, 167–179 (2017).

    CAS  PubMed  Google Scholar 

  214. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    CAS  PubMed  Google Scholar 

  215. Gibson, N. W. Engineered microRNA therapeutics. J. R. Coll. Physicians Edinb. 44, 196–200 (2014).

    CAS  PubMed  Google Scholar 

  216. Chakraborty, C., Sharma, A. R., Sharma, G. & Lee, S.-S. Therapeutic advances of miRNAs: a preclinical and clinical update. J. Adv. Res. 28, 127–138 (2020).

    PubMed  PubMed Central  Google Scholar 

  217. Wang, Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol. Biol. 676, 43–49 (2011).

    CAS  PubMed  Google Scholar 

  218. Eckstein, F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid. Drug Dev. 10, 117–121 (2000).

    CAS  PubMed  Google Scholar 

  219. Oka, N., Wada, T. & Saigo, K. An oxazaphospholidine approach for the stereocontrolled synthesis of oligonucleoside phosphorothioates. J. Am. Chem. Soc. 125, 8307–8317 (2003).

    CAS  PubMed  Google Scholar 

  220. Wan, W. B. et al. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages. Nucleic Acids Res. 42, 13456–13468 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Ostergaard, M. E. et al. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Nucleic Acids Res. 48, 1691–1700 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee, R. G., Crosby, J., Baker, B. F., Graham, M. J. & Crooke, R. M. Antisense technology: an emerging platform for cardiovascular disease therapeutics. J. Cardiovasc. Transl. Res. 6, 969–980 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank K. Butler for assistance in manuscript preparation, and W. Sullivan for figure preparation. This work is supported by internal funding from Ionis Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley T. Crooke.

Ethics declarations

Competing interests

All authors are employees and shareholders of Ionis Pharmaceuticals, Inc.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Akcea and Ionis report positive topline phase 2 results of AKCEA-APOCIII-LRx: https://ir.ionispharma.com/news-releases/news-release-details/akcea-and-ionis-report-positive-topline-phase-2-results-akcea

BioMarin announces withdrawal of market authorization application for Kyndrisa (drisapersen) in Europe: https://www.globenewswire.com/news-release/2016/05/31/844933/0/en/BioMarin-Announces-Withdrawal-of-Market-Authorization-Application-for-Kyndrisa-drisapersen-in-Europe.html

Miragen announces internal review of preliminary topline data for the phase 2 solar clinical trial of cobomarsen in patients with cutaneous T-cell lymphoma (CTCL): http://investors.miragen.com/press-releases/press-release/2020/miRagen-Announces-Internal-Review-of-Preliminary-Topline-Data-for-the-Phase-2-SOLAR-Clinical-Trial-of-Cobomarsen-in-Patients-with-Cutaneous-T-Cell-Lymphoma-CTCL/default.aspx

OncoGenex announces results from the phase 3 AFFINITY trial of custirsen in men with metastatic castrate-resistant prostate cancer: https://www.prnewswire.com/news-releases/oncogenex-announces-results-from-the-phase-3-affinity-trial-of-custirsen-in-men-with-metastatic-castrate-resistant-prostate-cancer-300313767.html

ProQR announces positive findings from an interim analysis in the phase 1/2 trial of QR-421a for Usher syndrome and provides business update: https://www.globenewswire.com/news-release/2020/03/31/2008955/0/en/ProQR-Announces-Positive-Findings-From-an-Interim-Analysis-in-the-Phase-1-2-trial-of-QR-421a-for-Usher-Syndrome-and-Provides-Business-Update.html

Regulus announces pipeline updates and advancements: https://www.prnewswire.com/news-releases/regulus-announces-pipeline-updates-and-advancements-300472142.html

Sarepta Therapeutics announces FDA approval of AMONDYS 45 (casimersen) injection for the treatment of Duchenne muscular dystrophy (DMD) in patients amenable to skipping exon 45: https://www.globenewswire.com/news-release/2021/02/25/2182845/0/en/Sarepta-Therapeutics-Announces-FDA-Approval-of-AMONDYS-45-casimersen-Injection-for-the-Treatment-of-Duchenne-Muscular-Dystrophy-DMD-in-Patients-Amenable-to-Skipping-Exon-45.html

Wave Life Sciences announces discontinuation of suvodirsen development for Duchenne muscular dystrophy: https://www.globenewswire.com/news-release/2019/12/16/1960830/0/en/Wave-Life-Sciences-Announces-Discontinuation-of-Suvodirsen-Development-for-Duchenne-Muscular-Dystrophy.html

Wave Life Sciences announces topline data and addition of higher dose cohort in ongoing phase 1b/2a PRECISION-HD2 trial in Huntington’s disease: https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-announces-topline-data-and-addition-higher

Glossary

Antisense oligonucleotide

(ASO). A short (12–24 nucleotides) oligonucleotide that can base-pair with complementary RNA and trigger different post-hybridization mechanisms to modulate gene expression. It can be either single-stranded or double-stranded.

Small interfering RNAs

(siRNAs). A short (~21 base pairs) RNA duplex that can trigger degradation of RNAs containing homologous sequences through endonucleolytic cleavage by AGO proteins.

RNase H1

An endoribonuclease that specifically cleaves the RNA strand present in a DNA–RNA heteroduplex and is the cellular enzyme used by antisense oligonucleotides to trigger specific degradation of complementary RNA. Its primary role in the cell is to remove R-loops.

Phosphorothioate

(PS). A backbone modification in a nucleic acid in which one non-bridging oxygen in the phosphodiester is replaced by a sulfur atom. PS modifications dramatically improve antisense oligonucleotide stability and pharmacological performance.

2′-O-methoxyethyl

(2′-MOE). A modification in which the 2′-OH in the ribose is replaced with a 2′-O-methoxyethyl group, which increases the binding affinity for RNA and improves antisense oligonucleotide drug performance.

2′-constrained ethyl

(2′-cEt). A modification that links the 2′ and 4′ positions in the ribose, which substantially increases the binding affinity for RNA and improves antisense oligonucleotide drug performance.

N-acetylgalactosamine

(GalNAc). A sugar derivative that binds with high affinity to the asialoglycoprotein receptor, which is selectively expressed on hepatocytes. Conjugation to triantennary GalNAc ligands is used to target antisense oligonucleotides to the liver.

Gapmer

A term that describes the design of a phosphorothioate antisense oligonucleotide with several 2ʹ-modified nucleotides at both the 5′ and 3′ ends (or ‘wings’) to enhance its affinity for target RNAs and its nuclease resistance, with a central portion that consists of PS 2′-H nucleotides to support RNase-H1-mediated cleavage of the target RNA.

AGO2

An endoribonuclease component of the RNA-induced silencing complex (RISC), which mediates the RNA-degrading activity of small interfering RNAs.

Nonsense-mediated mRNA decay

(NMD). An mRNA quality control mechanism in which mRNAs containing premature stop codons are selectively degraded.

No-go decay

An mRNA quality control mechanism in which mRNAs containing stacks of stalled ribosomes are degraded.

Cap structures

These contain N7-methylated guanosine linked through 5′–5′ triphosphate to the first nucleotide of mRNAs. The cap structure is required for mRNA processing, nuclear export, stability and cap-dependent translation. Antisense oligonucleotides can be designed to alter the cap structure and thus inhibit translation.

Polyadenylation sites

Cleavage sites of mRNA precursors where the polyadenine tail is added. Polyadenylation site use determines the length of the 3′ untranslated region (UTR), mRNA stability and translation. Antisense oligonucleotides can alter polyadenylation site utilization, thus modulating the fate of mRNAs.

Exon skipping

A process by which an exon that is normally present in mature mRNA is omitted during splicing, and thus is not present in mature mRNA. Antisense oligonucleotides can be designed to promote exon skipping with the goal of producing a shorter, but still functional, protein.

Upstream open reading frames

(uORFs). A uORF in an mRNA is an ORF with an AUG start codon upstream of the start codon for the ORF encoding a particular protein. The presence of the uORF can inhibit the translation of the primary ORF and thereby reduce the level of protein expression.

Translation inhibitory elements

(TIEs). mRNA structural elements present in the 5′ untranslated region of many mRNAs that inhibit translation in a position- and structural-strength-dependent manner.

Exon junction complex

(EJC). A protein complex loaded to mRNA exons near the exon–exon junction positions during splicing. An EJC present downstream of a stop codon is recognized by nonsense-mediated mRNA decay (NMD) factors to trigger mRNA degradation. Antisense oligonucleotides can be designed to displace the EJC complex, inhibiting NMD.

Off-target

In the context of oligonucleotide therapeutics, off-target refers to an RNA that is not designed to be targeted by an antisense oligonucleotide (ASO) or small interfering RNA (siRNA), but is unintentionally affected owing to complementarity to the ASO or siRNA sequence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crooke, S.T., Baker, B.F., Crooke, R.M. et al. Antisense technology: an overview and prospectus. Nat Rev Drug Discov 20, 427–453 (2021). https://doi.org/10.1038/s41573-021-00162-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00162-z

  • Springer Nature Limited

This article is cited by

Navigation