Lutjohann D, Breuer O, Ahlborg G et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A 1996; 93: 9799-9804.
CAS
PubMed
PubMed Central
Google Scholar
Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 1999; 96: 7238-7243.
CAS
PubMed
PubMed Central
Google Scholar
Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 1998; 39: 1594-1600.
CAS
PubMed
Google Scholar
Hudry E, Van Dam D, Kulik W et al. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer's disease. Mol Ther 2010; 18: 44-53.
CAS
PubMed
Google Scholar
Burlot MA, Braudeau J, Michaelsen-Preusse K et al. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol Genet 2015; 24: 5965-5976.
CAS
PubMed
Google Scholar
Boussicault L, Alves S, Lamaziere A et al. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease. Brain 2016; 139: 953-970.
PubMed
PubMed Central
Google Scholar
Mast N, Saadane A, Valencia-Olvera A et al. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer's disease. Neuropharmacology 2017; 123: 465-476.
CAS
PubMed
PubMed Central
Google Scholar
Patel TK, Patel VB, Rana DG. Possible anti-depressant effect of efavirenz and pro-depressive-like effect of voriconazole in specified doses in various experimental models of depression in mice. Pharmacol Rep 2017; 69: 1082-1087.
CAS
PubMed
Google Scholar
Han M, Wang S, Yang N et al. Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma. EMBO Mol Med 2019: e10924.
Kacher R, Lamaziere A, Heck N et al. CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington's disease. Brain 2019; 142: 2432-2450.
PubMed
Google Scholar
Mitroi DN, Pereyra-Gomez G, Soto-Huelin B et al. NPC1 enables cholesterol mobilization during long-term potentiation that can be restored in Niemann-Pick disease type C by CYP46A1 activation. EMBO Rep 2019: e48143.
Nobrega C, Mendonca L, Marcelo A et al. Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathol 2019.
Petrov AM, Lam M, Mast N et al. CYP46A1 activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics 2019; 16: 710-724.
CAS
PubMed
PubMed Central
Google Scholar
Ali T, Hannaoui S, Nemani S et al. Oral administration of repurposed drug targeting Cyp46A1 increases survival times of prion infected mice. Acta Neuropathol Commun 2021; 9: 58.
CAS
PubMed
PubMed Central
Google Scholar
Bialer M, Johannessen SI, Koepp MJ et al. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia 2018; 59: 1811–1841.
Mast N, Li Y, Linger M, Clark M, Wiseman J, Pikuleva IA. Pharmacologic stimulation of cytochrome P450 46A1 and cerebral cholesterol turnover in mice. J Biol Chem 2014; 289: 3529-3538.
CAS
PubMed
Google Scholar
Oakley H, Cole SL, Logan S et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006; 26: 10129-10140.
CAS
PubMed
PubMed Central
Google Scholar
Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J 2019; 33: 8782-8798.
CAS
PubMed
PubMed Central
Google Scholar
Nishi T, Kondo S, Miyamoto M et al. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor shows a therapeutic potential for neural hyperexcitation in mice. Sci Rep 2020; 10: 17081.
CAS
PubMed
PubMed Central
Google Scholar
Petrov AM, Mast N, Li Y, Denker J, Pikuleva IA. Brain sterol flux mediated by cytochrome P450 46A1 affects membrane properties and membrane-dependent processes. Brain Commun 2020; 2.
The UniProt C. UniProt: a hub for protein information. Nucleic Acids Research 2015; 43: D204-D212.
Google Scholar
Mast N, Lin JB, Anderson KW, Bjorkhem I, Pikuleva IA. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS One 2017; 12: e0187168.
Hu YT, Boonstra J, McGurran H et al. Sex differences in the neuropathological hallmarks of Alzheimer's disease: focus on cognitively intact elderly individuals. Neuropathol Appl Neurobiol 2021.
Guo L, Zhong MB, Zhang L, Zhang B, Cai D. Sex Differences in Alzheimer's Disease: Insights From the Multiomics Landscape. Biol Psychiatry 2021.
Doellinger J, Schneider A, Hoeller M, Lasch P. Sample Preparation by Easy Extraction and Digestion (SPEED) - A Universal, Rapid, and Detergent-free Protocol for Proteomics Based on Acid Extraction. Molecular & Cellular Proteomics 2020; 19: 209.
CAS
Google Scholar
Nickerson JL, Doucette AA. Rapid and Quantitative Protein Precipitation for Proteome Analysis by Mass Spectrometry. Journal of Proteome Research 2020; 19: 2035-2042.
CAS
PubMed
Google Scholar
Moggridge S, Sorensen PH, Morin GB, Hughes CS. Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics. Journal of Proteome Research 2018; 17: 1730-1740.
CAS
PubMed
Google Scholar
Searle BC, Pino LK, Egertson JD et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nature Communications 2018; 9: 5128.
PubMed
PubMed Central
Google Scholar
Chambers MC, Maclean B, Burke R et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 2012; 30: 918-920.
CAS
PubMed
PubMed Central
Google Scholar
Sturm M, Bertsch A, Gropl C et al. OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics 2008; 9: 163.
PubMed
PubMed Central
Google Scholar
Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004; 20: 1466-1467.
CAS
PubMed
Google Scholar
Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. Proteomics 2013; 13: 22-24.
CAS
PubMed
Google Scholar
Frewen B, MacCoss MJ. Using BiblioSpec for Creating and Searching Tandem MS Peptide Libraries. Current Protocols in Bioinformatics 2007; 20: 13.17.11–13.17.12.
Slotta DJ, McFarland MA, Markey SP. MassSieve: Panning MS/MS peptide data for proteins. PROTEOMICS 2010; 10: 3035-3039.
CAS
PubMed
PubMed Central
Google Scholar
Ammar C, Gruber M, Csaba G, Zimmer R. MS-EmpiRe Utilizes Peptide-level Noise Distributions for Ultra-sensitive Detection of Differentially Expressed Proteins. Molecular & Cellular Proteomics 2019; 18: 1880.
CAS
Google Scholar
Sims NR, Anderson MF. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 2008; 3: 1228-1239.
CAS
PubMed
Google Scholar
Szklarczyk D, Gable AL, Lyon D et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47: D607-d613.
CAS
Google Scholar
Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 2015; 21: 805-821.
CAS
PubMed
Google Scholar
Webb BA, Forouhar F, Szu F-E, Seetharaman J, Tong L, Barber DL. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature 2015; 523: 111-114.
CAS
PubMed
PubMed Central
Google Scholar
Benarroch EE. Brain glucose transporters. Neurology 2014; 82: 1374.
PubMed
Google Scholar
El-Darzi N, Mast N, Petrov AM et al. Studies of ApoD(-/-) and ApoD(-/-)ApoE(-/-) mice uncover the APOD significance for retinal metabolism, function, and status of chorioretinal blood vessels. Cell Mol Life Sci 2021; 78: 963-983.
CAS
PubMed
Google Scholar
Ronowska A, Szutowicz A, Bielarczyk H et al. The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. Front Cell Neurosci 2018; 12: 169.
PubMed
PubMed Central
Google Scholar
Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 2011; 505: 131-143.
CAS
PubMed
PubMed Central
Google Scholar
Pfrieger FW. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 2003; 60: 1158-1171.
CAS
PubMed
Google Scholar
Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 2003; 278: 22980-22988.
CAS
PubMed
Google Scholar
Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol 2000; 16: 459-481.
CAS
PubMed
Google Scholar
Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J Lipid Res 2009; 50 Suppl: S15-27.
PubMed
PubMed Central
Google Scholar
Meaney S. Epigenetic regulation of cholesterol homeostasis. Front Genet 2014; 5: 311.
PubMed
PubMed Central
Google Scholar
Hoyer S. Memory function and brain glucose metabolism. Pharmacopsychiatry 2003; 36 Suppl 1: S62-67.
CAS
PubMed
Google Scholar
Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci U S A 2006; 103: 3869-3874.
CAS
PubMed
PubMed Central
Google Scholar
Kotti T, Head DD, McKenna CE, Russell DW. Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proc Natl Acad Sci U S A 2008; 105: 11394-11399.
CAS
PubMed
PubMed Central
Google Scholar
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 2014; 15: 536-550.
CAS
PubMed
Google Scholar
Francis PT. The interplay of neurotransmitters in Alzheimer's disease. CNS Spectr 2005; 10: 6-9.
PubMed
Google Scholar
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Current neuropharmacology 2016; 14: 101-115.
CAS
PubMed
PubMed Central
Google Scholar
Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 2006; 23: 207-217.
CAS
PubMed
Google Scholar
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009; 324: 1076-1080.
CAS
PubMed
PubMed Central
Google Scholar
Drummond E, Pires G, MacMurray C et al. Phosphorylated tau interactome in the human Alzheimer's disease brain. Brain 2020; 143: 2803-2817.
PubMed
PubMed Central
Google Scholar
Goellner B, Aberle H. The synaptic cytoskeleton in development and disease. Developmental Neurobiology 2012; 72: 111-125.
CAS
PubMed
Google Scholar
Lanciotti A, Brignone MS, Molinari P et al. Megalencephalic leukoencephalopathy with subcortical cysts protein 1 functionally cooperates with the TRPV4 cation channel to activate the response of astrocytes to osmotic stress: dysregulation by pathological mutations. Hum Mol Genet 2012; 21: 2166-2180.
CAS
PubMed
Google Scholar
López-Marqués RL, Gourdon P, Günther Pomorski T, Palmgren M. The transport mechanism of P4 ATPase lipid flippases. Biochem J 2020; 477: 3769-3790.
PubMed
Google Scholar
Honigmann A, van den Bogaart G, Iraheta E et al. Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nat Struct Mol Biol 2013; 20: 679-686.
CAS
PubMed
PubMed Central
Google Scholar
Lira M, Mira RG, Carvajal FJ, Zamorano P, Inestrosa NC, Cerpa W. Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9.
Fernández-Chacón R, Königstorfer A, Gerber SH et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001; 410: 41-49.
PubMed
Google Scholar
Davletov B, Sontag JM, Hata Y et al. Phosphorylation of synaptotagmin I by casein kinase II. J Biol Chem 1993; 268: 6816-6822.
CAS
PubMed
Google Scholar
Liang T, Sang S, Shao Q et al. Abnormal expression and prognostic significance of EPB41L1 in kidney renal clear cell carcinoma based on data mining. Cancer Cell Int 2020; 20: 356.
CAS
PubMed
PubMed Central
Google Scholar
Han X, Wang X, Li H, Zhang H. Mechanism of microRNA-431-5p-EPB41L1 interaction in glioblastoma multiforme cells. Arch Med Sci 2019; 15: 1555-1564.
CAS
PubMed
PubMed Central
Google Scholar
Medina M, Marinescu RC, Overhauser J, Kosik KS. Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. Genomics 2000; 63: 157-164.
CAS
PubMed
Google Scholar
Lu Q, Aguilar BJ, Li M, Jiang Y, Chen YH. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases. Hum Genet 2016; 135: 1107-1116.
CAS
PubMed
PubMed Central
Google Scholar
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913-963.
CAS
PubMed
Google Scholar
García-García C, Frieda KL, Feoktistova K, Fraser CS, Block SM. Factor-dependent processivity in human eIF4A DEAD-box helicase. Science 2015; 348: 1486-1488.
PubMed
PubMed Central
Google Scholar
Shahbazian D, Parsyan A, Petroulakis E, Hershey J, Sonenberg N. eIF4B controls survival and proliferation and is regulated by proto-oncogenic signaling pathways. Cell Cycle 2010; 9: 4106-4109.
CAS
PubMed
PubMed Central
Google Scholar
Hotta A, Kawakatsu T, Nakatani T et al. Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5alpha/beta. J Cell Biol 2010; 189: 901-917.
CAS
PubMed
PubMed Central
Google Scholar
Sala K, Raimondi A, Tonoli D, Tacchetti C, de Curtis I. Identification of a membrane-less compartment regulating invadosome function and motility. Sci Rep 2018; 8: 1164.
PubMed
PubMed Central
Google Scholar
Viana-Pereira M, Moreno DA, Linhares P et al. Replication of GWAS identifies RTEL1, CDKN2A/B, and PHLDB1 SNPs as risk factors in Portuguese gliomas patients. Mol Biol Rep 2020; 47: 877-886.
CAS
PubMed
Google Scholar
Di Stefano P, Damiano L, Cabodi S et al. p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. The EMBO Journal 2007; 26: 2843-2855.
PubMed
PubMed Central
Google Scholar
Krishnan R, Boddapati N, Mahalingam S. Interplay between human nucleolar GNL1 and RPS20 is critical to modulate cell proliferation. Sci Rep 2018; 8: 11421.
PubMed
PubMed Central
Google Scholar
Schonkeren SL, Massen M, van der Horst R, Koch A, Vaes N, Melotte V. Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system. Neurogenetics 2019; 20: 173-186.
CAS
PubMed
PubMed Central
Google Scholar
Tennstedt P, Bölch C, Strobel G et al. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol 2014; 44: 609-615.
CAS
PubMed
Google Scholar
Boutros R, Fanayan S, Shehata M, Byrne JA. The tumor protein D52 family: many pieces, many puzzles. Biochem Biophys Res Commun 2004; 325: 1115-1121.
CAS
PubMed
Google Scholar
Chevet E, Smirle J, Cameron PH, Thomas DY, Bergeron JJ. Calnexin phosphorylation: linking cytoplasmic signalling to endoplasmic reticulum lumenal functions. Semin Cell Dev Biol 2010; 21: 486-490.
CAS
PubMed
Google Scholar
Oh M, Kim H, Yang I et al. GSK-3 phosphorylates delta-catenin and negatively regulates its stability via ubiquitination/proteosome-mediated proteolysis. J Biol Chem 2009; 284: 28579-28589.
CAS
PubMed
PubMed Central
Google Scholar
Moutal A, White KA, Chefdeville A et al. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56: 6736-6755.
CAS
PubMed
PubMed Central
Google Scholar
Bettegazzi B, Bellani S, Roncon P et al. eIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Sci Rep 2017; 7: 10563.
PubMed
PubMed Central
Google Scholar
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11: 266.
PubMed
PubMed Central
Google Scholar
Riederer BM. Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 2007; 71: 541-558.
CAS
PubMed
Google Scholar
Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It’s all about tau. Prog Neurobiol 2019; 175: 54-76.
CAS
PubMed
Google Scholar
Veeranna, Shetty KT, Link WT, Jaffe H, Wang J, Pant HC. Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A. J Neurochem 1995; 64: 2681–2690.
Veeranna, Amin ND, Ahn NG et al. Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci 1998; 18: 4008–4021.
Veeranna, Yang DS, Lee JH et al. Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiol Aging 2011; 32: 2016–2029.
Hilfiker S, Pieribone VA, Nordstedt C, Greengard P, Czernik AJ. Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem 1999; 73: 921-932.
CAS
PubMed
Google Scholar
Nagy G, Kim JH, Pang ZP et al. Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci 2006; 26: 632-643.
CAS
PubMed
PubMed Central
Google Scholar
Mast N, El-Darzi N, Petrov AM, Li Y, Pikuleva IA. CYP46A1-dependent and independent effects of efavirenz treatment. Brain Commun 2020; 2: fcaa180.
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9.
Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA. The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 2005; 16: 1095-1107.
CAS
PubMed
PubMed Central
Google Scholar
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2018; 247: 138-155.
CAS
PubMed
Google Scholar
Sánchez C, Díaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 2000; 61: 133-168.
PubMed
Google Scholar
Ishikawa Y, Okada M, Honda A et al. Phosphorylation sites of microtubule-associated protein 1B (MAP 1B) are involved in axon growth and regeneration. Mol Brain 2019; 12: 93.
PubMed
PubMed Central
Google Scholar
Hensley K, Venkova K, Christov A, Gunning W, Park J. Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 2011; 43: 180-191.
CAS
PubMed
Google Scholar
Martins-de-Souza D, Cassoli JS, Nascimento JM et al. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteomics Clin Appl 2015; 9: 817-831.
CAS
PubMed
Google Scholar
Kawasaki A, Okada M, Tamada A et al. Growth Cone Phosphoproteomics Reveals that GAP-43 Phosphorylated by JNK Is a Marker of Axon Growth and Regeneration. iScience 2018; 4: 190–203.
Kim K, Sirota A, Chen Yh YH et al. Dendrite-like process formation and cytoskeletal remodeling regulated by delta-catenin expression. Exp Cell Res 2002; 275: 171-184.
CAS
PubMed
Google Scholar
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986; 83: 4913-4917.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 2016; 17: 5-21.
PubMed
Google Scholar
Jaworski J, Kapitein LC, Gouveia SM et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 2009; 61: 85-100.
CAS
PubMed
Google Scholar
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta 2014; 1838: 605–619.
Bennett V, Lorenzo DN. Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates. Curr Top Membr 2013; 72: 1-37.
CAS
PubMed
Google Scholar
Kishi M, Pan YA, Crump JG, Sanes JR. Mammalian SAD Kinases Are Required for Neuronal Polarization. Science 2005; 307: 929.
CAS
PubMed
Google Scholar
Fuchs E, Karakesisoglou I. Bridging cytoskeletal intersections. Genes Dev 2001; 15: 1-14.
CAS
PubMed
Google Scholar
Tymanskyj SR, Yang BH, Verhey KJ, Ma L. MAP7 regulates axon morphogenesis by recruiting kinesin-1 to microtubules and modulating organelle transport. Elife 2018; 7.
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiological Reviews 2017; 98: 215-238.
Google Scholar
Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 2009; 10: 682-696.
CAS
PubMed
Google Scholar
Morfini G, Schmidt N, Weissmann C, Pigino G, Kins S. Conventional kinesin: Biochemical heterogeneity and functional implications in health and disease. Brain Res Bull 2016; 126: 347-353.
CAS
PubMed
Google Scholar
Van Ngo H, Mostowy S. Role of septins in microbial infection. Journal of Cell Science 2019; 132: jcs226266.
Bridges AA, Gladfelter AS. Septin Form and Function at the Cell Cortex. J Biol Chem 2015; 290: 17173-17180.
CAS
PubMed
PubMed Central
Google Scholar
Arnér ES. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta 2009; 1790: 495-526.
PubMed
Google Scholar
Damdimopoulou PE, Miranda-Vizuete A, Arnér ES, Gustafsson JA, Damdimopoulos AE. The human thioredoxin reductase-1 splice variant TXNRD1_v3 is an atypical inducer of cytoplasmic filaments and cell membrane filopodia. Biochim Biophys Acta 2009; 1793: 1588-1596.
CAS
PubMed
Google Scholar
Oláh J, Szénási T, Szabó A et al. Tubulin Binding and Polymerization Promoting Properties of Tubulin Polymerization Promoting Proteins Are Evolutionarily Conserved. Biochemistry 2017; 56: 1017-1024.
PubMed
Google Scholar