Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014;83:278-286.
PubMed
PubMed Central
Google Scholar
Kappos L, Wolinsky JS, Giovannoni G, et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol 2020;77:1132-1140.
PubMed
Google Scholar
Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol 2001;13:1583-1593.
CAS
PubMed
Google Scholar
Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233-258.
CAS
PubMed
Google Scholar
Mathias A, Perriard G, Canales M, et al. Increased ex vivo antigen presentation profile of B cells in multiple sclerosis. Mult Scler 2017;23:802-809.
CAS
PubMed
Google Scholar
Duddy M, Niino M, Adatia F, et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 2007;178:6092-6099.
CAS
PubMed
Google Scholar
Barr TA, Shen P, Brown S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 2012;209:1001-1010.
CAS
PubMed
PubMed Central
Google Scholar
Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010;67:452-461.
CAS
PubMed
Google Scholar
Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235-238.
CAS
PubMed
Google Scholar
Korn T, Mitsdoerffer M, Croxford AL, et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2008;105:18460-18465.
CAS
PubMed
PubMed Central
Google Scholar
Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002;3:944-950.
CAS
PubMed
Google Scholar
Li R, Rezk A, Miyazaki Y, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med 2015;7:310ra166.
Fujihara K, Sato DK, Nakashima I, et al. Myelin oligodendrocyte glycoprotein immunoglobulin G-associated disease: An overview. Clinical and Experimental Neuroimmunology 2018;9:48-55.
CAS
Google Scholar
Kabat EA, Moore DH, Landow H. An Electrophoretic Study of the Protein Components in Cerebrospinal Fluid and Their Relationship to the Serum Proteins. J Clin Invest 1942;21:571-577.
CAS
PubMed
PubMed Central
Google Scholar
Link H, Huang YM. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 2006;180:17-28.
CAS
PubMed
Google Scholar
Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162-173.
PubMed
Google Scholar
Lucchinetti C, Bruck W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47:707-717.
CAS
PubMed
Google Scholar
Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 2004;14:164-174.
PubMed
Google Scholar
Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011;134:2755-2771.
PubMed
Google Scholar
Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007;130:1089-1104.
PubMed
Google Scholar
Negron A, Stuve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020;11:607766.
PubMed
PubMed Central
Google Scholar
Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 2008;63:395-400.
CAS
PubMed
Google Scholar
Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol 1980;125:1678-1685.
CAS
PubMed
Google Scholar
Stashenko P, Nadler LM, Hardy R, Schlossman SF. Expression of cell surface markers after human B lymphocyte activation. Proc Natl Acad Sci U S A 1981;78:3848-3852.
CAS
PubMed
PubMed Central
Google Scholar
Hultin LE, Hausner MA, Hultin PM, Giorgi JV. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry 1993;14:196-204.
CAS
PubMed
Google Scholar
Meyer S, Evers M, Jansen JHM, et al. New insights in Type I and II CD20 antibody mechanisms-of-action with a panel of novel CD20 antibodies. Br J Haematol 2018;180:808-820.
CAS
PubMed
Google Scholar
Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008;358:676-688.
CAS
PubMed
Google Scholar
Hawker K, O'Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009;66:460-471.
CAS
PubMed
Google Scholar
Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med 2017;376:221-234.
CAS
PubMed
Google Scholar
Frampton JE. Ocrelizumab: First Global Approval. Drugs 2017;77:1035-1041.
CAS
PubMed
Google Scholar
Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med 2020;383:546-557.
CAS
PubMed
Google Scholar
Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994;83:435-445.
CAS
PubMed
Google Scholar
Leget GA, Czuczman MS. Use of rituximab, the new FDA-approved antibody. Curr Opin Oncol 1998;10:548-551.
CAS
PubMed
Google Scholar
Harjunpaa A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol 2000;51:634-641.
CAS
PubMed
Google Scholar
Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006;180:63-70.
CAS
PubMed
PubMed Central
Google Scholar
Rubenstein JL, Combs D, Rosenberg J, et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood 2003;101:466-468.
CAS
PubMed
Google Scholar
Salzer J, Svenningsson R, Alping P, et al. Rituximab in multiple sclerosis: A retrospective observational study on safety and efficacy. Neurology 2016;87:2074-2081.
CAS
PubMed
PubMed Central
Google Scholar
Klein C, Lammens A, Schafer W, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 2013;5:22-33.
PubMed
PubMed Central
Google Scholar
Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011;378:1779-1787.
CAS
PubMed
Google Scholar
Hauser SL, Kappos L, Arnold DL, et al. Five years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology 2020;95:e1854-e1867.
CAS
PubMed
PubMed Central
Google Scholar
McCool R, Wilson K, Arber M, et al. Systematic review and network meta-analysis comparing ocrelizumab with other treatments for relapsing multiple sclerosis. Mult Scler Relat Dis 2019;29:55-61.
Google Scholar
Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med 2017;376:209-220.
CAS
PubMed
Google Scholar
Fox E, Markowitz C, Appliebee A, et al. Effect of ocrelizumab on upper limb function in patients with primary progressive multiple sclerosis (PPMS) in the oratorio study (ENCORE). The Australian & New Zealand Association of Neurologists (ANZAN) 2018;033.
Wolinsky JS, Arnold DL, Brochet B, et al. Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial. Lancet Neurol 2020;19:998-1009.
CAS
PubMed
Google Scholar
Wolinsky JS, Montalban X, Hauser SL, et al. Prespecified Subgroup Analyses of Ocrelizumab Efficacy in Patients With Primary Progressive Multiple SclerosisFrom the Phase III ORATORIO Study. CMSC 2018;DX42.
Klein C, Jamois C, Nielsen T. Anti-CD20 treatment for B-cell malignancies: current status and future directions. Expert Opin Biol Ther 2020:1–21.
Smith A. EMA, FDA both accept filing of Novartis’ ofatumumab. In: PharmaTimes [online] 2020; Available at: http://www.pharmatimes.com/news. Accessed December 19, 2020.
Kahari L, Fair-Makela R, Auvinen K, et al. Transcytosis route mediates rapid delivery of intact antibodies to draining lymph nodes. J Clin Invest 2019;129:3086-3102.
PubMed
PubMed Central
Google Scholar
Theil D, Smith P, Huck C, et al. Imaging Mass Cytometry and Single-Cell Genomics Reveal Differential Depletion and Repletion of B-Cell Populations Following Ofatumumab Treatment in Cynomolgus Monkeys. Front Immunol 2019;10:1340.
CAS
PubMed
PubMed Central
Google Scholar
Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology 2014;82:573-581.
CAS
PubMed
Google Scholar
Kurrasch R, Brown JC, Chu M, et al. Subcutaneously administered ofatumumab in rheumatoid arthritis: a phase I/II study of safety, tolerability, pharmacokinetics, and pharmacodynamics. J Rheumatol 2013;40:1089-1096.
CAS
PubMed
Google Scholar
Bar-Or A, Fox E, Goodyear A, et al. Onset Of B-cell Depletion With Subcutaneous Administration Of Ofatumumab In Relapsing Multiple Sclerosis: Results From The APLIOS Bioequivalence Study. ACTRIMS 2020;LB300.
Radue EW, Sprenger T, Gaetano L, et al. Teriflunomide slows BVL in relapsing MS: A reanalysis of the TEMSO MRI data set using SIENA. Neurol Neuroimmunol Neuroinflamm 2017;4:e390.
PubMed
PubMed Central
Google Scholar
Sprenger T, Kappos L, Radue EW, et al. Association of brain volume loss and long-term disability outcomes in patients with multiple sclerosis treated with teriflunomide. Mult Scler 2020;26:1207-1216.
CAS
PubMed
Google Scholar
Gärtner J, Hauser S, Bar-Or A, et al. Benefit-risk of ofatumumab in treatment-naïve early relapsing multiple sclerosis patients. Presented at the 8th Joint ACTRIMS-ECTRIMS Meeting - MS Virtual 2020; September 11th - 13th, 2020; Online 2020.
Stankiewicz JM, Weiner HL. An argument for broad use of high efficacy treatments in early multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2020;7.
Samjoo IA, Worthington E, Drudge C, et al. Comparison of ofatumumab and other disease-modifying therapies for relapsing multiple sclerosis: a network meta-analysis. J Comp Eff Res 2020;9:1255-1274.
PubMed
Google Scholar
TG Therapeutics I. TG Therapeutics Announces Fast Track Designation Granted by the FDA to Ublituximab in Combination with Umbralisib for the Treatment of Adult Patients with Chronic Lymphocytic Leukemia. In: TG Therapeutics [online] 2020; Available at: https://www.tgtherapeutics.com. Accessed December 19, 2020.
Babiker HM, Glode AE, Cooke LS, Mahadevan D. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin Investig Drugs 2018;27:407-412.
CAS
PubMed
Google Scholar
Le Garff-Tavernier M, Herbi L, de Romeuf C, et al. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia 2014;28:230-233.
PubMed
Google Scholar
Fox E, Lovett-Racke AE, Gormley M, et al. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler 2020:1352458520918375.
Lovett-Racke AE, Gormley M, Liu Y, et al. B cell depletion with ublituximab reshapes the T cell profile in multiple sclerosis patients. J Neuroimmunol 2019;332:187-197.
CAS
PubMed
Google Scholar
Beum PV, Lindorfer MA, Beurskens F, et al. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol 2008;181:822-832.
CAS
PubMed
Google Scholar
Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004;104:1793-1800.
CAS
PubMed
Google Scholar
Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol 2019;10:362.
CAS
PubMed
PubMed Central
Google Scholar
Tatomir A, Talpos-Caia A, Anselmo F, et al. The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol Res 2017;65:1103-1109.
CAS
PubMed
PubMed Central
Google Scholar
Klein C, Jamois C, Nielsen T. Anti-CD20 treatment for B-cell malignancies: current status and future directions. Expert Opin Biol Ther. 2020/09/17 ed2020.
Konno Y, Kobayashi Y, Takahashi K, et al. Fucose content of monoclonal antibodies can be controlled by culture medium osmolality for high antibody-dependent cellular cytotoxicity. Cytotechnology 2012;64:249-265.
CAS
PubMed
Google Scholar
Lehmann-Horn K, Kronsbein HC, Weber MS. Targeting B cells in the treatment of multiple sclerosis: recent advances and remaining challenges. Ther Adv Neurol Disord 2013;6:161-173.
PubMed
PubMed Central
Google Scholar
Tahir H, Rohrer J, Bhatia A, Wegener WA, Isenberg DA. Humanized anti-CD20 monoclonal antibody in the treatment of severe resistant systemic lupus erythematosus in a patient with antibodies against rituximab. Rheumatology (Oxford) 2005;44:561-562.
CAS
Google Scholar
Caldito NG, Shirani A, Salter A, Stuve O. Adverse event profile differences between rituximab and ocrelizumab: Findings from the FDA Adverse Event Reporting Database. Mult Scler 2020:1352458520949986.
Google Scholar
Gelfand JM, Cree BAC, Hauser SL. Ocrelizumab and Other CD20(+) B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics 2017;14:835-841.
CAS
PubMed
PubMed Central
Google Scholar
Winkler U, Jensen M, Manzke O, et al. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood 1999;94:2217-2224.
CAS
PubMed
Google Scholar
Bar-Or A, Grove RA, Austin DJ, et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: The MIRROR study. Neurology 2018;90:e1805-e1814.
CAS
PubMed
PubMed Central
Google Scholar
van der Kolk LE, Grillo-Lopez AJ, Baars JW, Hack CE, van Oers MH. Complement activation plays a key role in the side-effects of rituximab treatment. Br J Haematol 2001;115:807-811.
PubMed
Google Scholar
OCREVUS prescribing information [online]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761053lbl.pdf. Accessed November 25.
KESIMPTA prescribing information [online]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125326s070lbl.pdf. Accessed November, 25.
Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 2005;353:369-374.
CAS
PubMed
Google Scholar
Carson KR, Evens AM, Richey EA, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 2009;113:4834-4840.
CAS
PubMed
PubMed Central
Google Scholar
Clifford DB, Ances B, Costello C, et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch Neurol 2011;68:1156-1164.
PubMed
PubMed Central
Google Scholar
Clifford DB, Gass A, Richert N, et al. Cases Reported as Progressive Multifocal Leukoencephalopathy in Ocrelizumab-Treated Patients With Multiple Sclerosis. ECTRIMS 2019;P970.
Mancinelli CR, Scarpazza C, Cordioli C, et al. Switching to ocrelizumab in RRMS patients at risk of PML previously treated with extended interval dosing of natalizumab. Mult Scler 2020:1352458520946017.
Alping P, Frisell T, Novakova L, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol 2016;79:950-958.
CAS
PubMed
Google Scholar
Rempe T, Carlson A, Miravalle A, Gyang TV. Anti-JCV antibody index does not change during ocrelizumab-treatment. Mult Scler J Exp Transl Clin 2020;6:2055217320960510.
PubMed
PubMed Central
Google Scholar
Sacco KA, Abraham RS. Consequences of B-cell-depleting therapy: hypogammaglobulinemia and impaired B-cell reconstitution. Immunotherapy 2018;10:713-728.
CAS
PubMed
Google Scholar
Bar-Or A, Bermel R, Weber MS, et al. Serum Ig Levels and Risk of Serious Infections by Baseline Ig Quartile in the Pivotal Phase III Trials and Open‐Label Extensions of Ocrelizumab in Multiple Sclerosis. ANN 2020;P6.1–008.
de Seze J, Bar-Or A, Correale J, et al. Effect of Ofatumumab on Serum Immuno-globulin Levels and Infection Risk in Relapsing Multiple Sclerosis Patients from the Phase 3 ASCLEPIOS I and II Trials. EAN 2020;LB82.
Norgaard M, Veres K, Didden EM, Wormser D, Magyari M. Multiple sclerosis and cancer incidence: A Danish nationwide cohort study. Mult Scler Relat Disord 2019;28:81-85.
CAS
PubMed
Google Scholar
Alping P, Askling J, Burman J, et al. Cancer Risk for Fingolimod, Natalizumab, and Rituximab in Multiple Sclerosis Patients. Ann Neurol 2020;87:688-699.
CAS
PubMed
Google Scholar
van Vollenhoven RF, Emery P, Bingham CO, 3rd, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis 2013;72:1496–1502.
Greenberg BM, Graves D, Remington G, et al. Rituximab dosing and monitoring strategies in neuromyelitis optica patients: creating strategies for therapeutic success. Mult Scler 2012;18:1022-1026.
PubMed
Google Scholar
Palanichamy A, Jahn S, Nickles D, et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol 2014;193:580-586.
CAS
PubMed
Google Scholar
Gingele S, Jacobus TL, Konen FF, et al. Ocrelizumab Depletes CD20(+) T Cells in Multiple Sclerosis Patients. Cells 2018;8.
Schuh E, Berer K, Mulazzani M, et al. Features of Human CD3+CD20+ T Cells. J Immunol 2016;197:1111-1117.
CAS
PubMed
Google Scholar
Eggleton P, Bremer E, Tarr JM, et al. Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects. Arthritis Res Ther 2011;13:R208.
CAS
PubMed
PubMed Central
Google Scholar
Wilk E, Witte T, Marquardt N, et al. Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis Rheum 2009;60:3563-3571.
CAS
PubMed
Google Scholar
Lehmann-Horn K, Schleich E, Hertzenberg D, et al. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders. J Neuroinflammation 2011;8:146.
CAS
PubMed
PubMed Central
Google Scholar
Sabat R, Grutz G, Warszawska K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev 2010;21:331-344.
CAS
PubMed
Google Scholar
Baker D, Pryce G, James LK, Marta M, Schmierer K. The ocrelizumab phase II extension trial suggests the potential to improve the risk: Benefit balance in multiple sclerosis. Mult Scler Relat Disord 2020;44:102279.
PubMed
Google Scholar
Smith P, Huck C, Schmid C, al. e. Ofatumumab Differs from Rituximab by Effectively Targeting Lymph Node B cells and Achieving Faster Post-treatment Repletion (S24.003). Neurology 2017;Apr 18.88 (16 Supplement).
Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B Cells are Major Targets for Effective Immunotherapy in Relapsing Multiple Sclerosis. EBioMedicine 2017;16:41-50.
PubMed
PubMed Central
Google Scholar
Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum 2006;54:613-620.
CAS
PubMed
Google Scholar
Nissimov N, Hajiyeva Z, Torke S, et al. B cells reappear less mature and more activated after their anti-CD20–mediated depletion in multiple sclerosis. Proceedings of the National Academy of Sciences 2020;117:25690-25699.
CAS
Google Scholar
Hausler D, Hausser-Kinzel S, Feldmann L, et al. Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. Proc Natl Acad Sci U S A 2018;115:9773-9778.
PubMed
PubMed Central
Google Scholar
Berkani N, Joly P, Golinski ML, et al. B-cell depletion induces a shift in self antigen specific B-cell repertoire and cytokine pattern in patients with bullous pemphigoid. Sci Rep 2019;9:3525.
PubMed
PubMed Central
Google Scholar
Roll P, Palanichamy A, Kneitz C, Dorner T, Tony HP. Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum 2006;54:2377-2386.
CAS
PubMed
Google Scholar
Ellwardt E, Ellwardt L, Bittner S, Zipp F. Monitoring B-cell repopulation after depletion therapy in neurologic patients. Neurol Neuroimmunol Neuroinflamm 2018;5:e463.
PubMed
PubMed Central
Google Scholar
Greenfield AL, Hauser SL. B-cell Therapy for Multiple Sclerosis: Entering an era. Ann Neurol 2018;83:13-26.
PubMed
PubMed Central
Google Scholar
Petracca M, Margoni M, Bommarito G, Inglese M. Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques. Neurol Ther 2018;7:265-285.
PubMed
PubMed Central
Google Scholar
Esfandi S, Salimian S, Corboy J, Alvarez E. Persistent B lymphocytes in multiple sclerosis plaques after rituximab treatment (P5.341). Neurology 2017;88:P5.341.
Batchelor TT, Grossman SA, Mikkelsen T, et al. Rituximab monotherapy for patients with recurrent primary CNS lymphoma. Neurology 2011;76:929-930.
CAS
PubMed
PubMed Central
Google Scholar
Ltd FH-LR. Roche to present new OCREVUS (ocrelizumab) data analyses showing significant reduction of disability progression in relapsing and primary progressive multiple sclerosis at the AAN Annual Meeting. In: Roche [online] 2019; Available at: https://www.roche.com/media/releases. Accessed December 19, 2020.
Komori M, Lin YC, Cortese I, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol 2016;3:166-179.
CAS
PubMed
PubMed Central
Google Scholar
Sellebjerg F, Blinkenberg M, Sorensen PS. Anti-CD20 Monoclonal Antibodies for Relapsing and Progressive Multiple Sclerosis. CNS drugs 2020;34:269-280.
CAS
PubMed
Google Scholar
Ellrichmann G, Bolz J, Peschke M, et al. Peripheral CD19(+) B-cell counts and infusion intervals as a surrogate for long-term B-cell depleting therapy in multiple sclerosis and neuromyelitis optica/neuromyelitis optica spectrum disorders. J Neurol 2019;266:57-67.
CAS
PubMed
Google Scholar
Hartung HP, Kieseier BC. Atacicept: targeting B cells in multiple sclerosis. Ther Adv Neurol Disord 2010;3:205-216.
CAS
PubMed
PubMed Central
Google Scholar
Kappos L, Hartung HP, Freedman MS, et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol 2014;13:353-363.
CAS
PubMed
Google Scholar
Weber MS, Prod'homme T, Patarroyo JC, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010;68:369-383.
CAS
PubMed
PubMed Central
Google Scholar
Weber MS, Bar-Or A, Herman A, et al. Modulation of CSF Immunoglobulins by Ocrelizumab Treatment. Presented at the 8th Joint ACTRIMS-ECTRIMS Meeting - MS Virtual 2020; September 11th - 13th, 2020; Online.
Cross A, Bennett J, von Büdingen HC, et al. Ocrelizumab treatment reduced levels of neurofilament light chain and numbers of B cells in the cerebrospinal fluid of patients with relapsing multiple sclerosis in the OBOE study (S56.008). Neurology 2019;92:S56.008.
Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013;369:32-42.
CAS
PubMed
PubMed Central
Google Scholar
Mano H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev 1999;10:267-280.
CAS
PubMed
Google Scholar
Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood 2012;120:1175-1184.
CAS
PubMed
PubMed Central
Google Scholar
Rahmat LT, Logan AC. Ibrutinib for the treatment of patients with chronic graft-versus-host disease after failure of one or more lines of systemic therapy. Drugs Today (Barc) 2018;54:305-313.
CAS
Google Scholar
Dimopoulos MA, Tedeschi A, Trotman J, et al. Phase 3 Trial of Ibrutinib plus Rituximab in Waldenstrom's Macroglobulinemia. N Engl J Med 2018;378:2399-2410.
CAS
PubMed
Google Scholar
Maddocks K. Update on mantle cell lymphoma. Blood 2018;132:1647-1656.
CAS
PubMed
Google Scholar
Miklos D, Cutler CS, Arora M, et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood 2017;130:2243-2250.
CAS
PubMed
PubMed Central
Google Scholar
Chang BY, Huang MM, Francesco M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 2011;13:R115.
CAS
PubMed
PubMed Central
Google Scholar
Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 2010;107:13075-13080.
CAS
PubMed
PubMed Central
Google Scholar
Torke S, Pretzsch R, Hausler D, et al. Inhibition of Bruton's tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol 2020;140:535-548.
CAS
PubMed
PubMed Central
Google Scholar
Haselmayer P, Camps M, Liu-Bujalski L, et al. Efficacy and Pharmacodynamic Modeling of the BTK Inhibitor Evobrutinib in Autoimmune Disease Models. J Immunol 2019;202:2888-2906.
CAS
PubMed
PubMed Central
Google Scholar
Melao A. Potential B-cell targeting oral MS treatment, PRN2246, shows ability to reach brain in phase 1 study. In: Multiple Sclerosis News Today [online] 2018; Available at: https://multiplesclerosisnewstoday.com. Accessed December 19, 2020.
Gheen M, Johnson A, Harp C, et al. Fenebrutinib, a noncovalent, highly selective, long residence time investigational Btk inhibitor for the treatment of MS. Presented at the 8th Joint ACTRIMS-ECTRIMS Meeting - MS Virtual 2020; September 11th - 13th, 2020; Online.
Hauser SL, Bar-Or A, Francis G, et al. Evaluation of Fenebrutinib, a Highly Selective BTKi, on Disease Progression of Multiple Sclerosis. Presented at the 8th Joint ACTRIMS-ECTRIMS Meeting - MS Virtual 2020; September 11th - 13th, 2020; Online.