Skip to main content
Log in

Novel mGluR5 Positive Allosteric Modulator Improves Functional Recovery, Attenuates Neurodegeneration, and Alters Microglial Polarization after Experimental Traumatic Brain Injury

  • Original Article
  • Published:
Neurotherapeutics

Abstract

Traumatic brain injury (TBI) causes microglial activation and related neurotoxicity that contributes to chronic neurodegeneration and loss of neurological function. Selective activation of metabotropic glutamate receptor 5 (mGluR5) by the orthosteric agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), is neuroprotective in experimental models of TBI, and has potent anti-inflammatory effects in vitro. However, the therapeutic potential of CHPG is limited due to its relatively weak potency and brain permeability. Highly potent, selective and brain penetrant mGluR5 positive allosteric modulators (PAMs) have been developed and show promise as therapeutic agents. We evaluated the therapeutic potential of a novel mGluR5 PAM, VU0360172, after controlled cortical impact (CCI) in mice. Vehicle, VU0360172, or VU0360172 plus mGluR5 antagonist (MTEP), were administered systemically to CCI mice at 3 h post-injury; lesion volume, hippocampal neurodegeneration, microglial activation, and functional recovery were assessed through 28 days post-injury. Anti-inflammatory effects of VU0360172 were also examined in vitro using BV2 and primary microglia. VU0360172 treatment significantly reduced the lesion, attenuated hippocampal neurodegeneration, and improved motor function recovery after CCI. Effects were mediated by mGluR5 as co-administration of MTEP blocked the protective effects of VU0360172. VU0360172 significantly reduced CD68 and NOX2 expression in activated microglia in the cortex at 28 days post-injury, and also suppressed pro-inflammatory signaling pathways in BV2 and primary microglia. In addition, VU0360172 treatment shifted the balance between M1/M2 microglial activation states towards an M2 pro-repair phenotype. This study demonstrates that VU0360172 confers neuroprotection after experimental TBI, and suggests that mGluR5 PAMs may be promising therapeutic agents for head injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 2009;8:41–54. doi:10.1038/nrd2760.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2014;61:55–71. doi:10.1016/j.nbd.2013.09.013.

    Article  PubMed  Google Scholar 

  3. Nicoletti F, Bockaert J, Collingridge GL, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–1041. doi:10.1016/j.neuropharm.2010.10.022.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Byrnes KR, Loane DJ, Faden AI. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics. 2009;6:94–107. doi:10.1016/j.nurt.2008.10.038.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Allen JW, Knoblach SM, Faden AI. Activation of group I metabotropic glutamate receptors reduces neuronal apoptosis but increases necrotic cell death in vitro. Cell Death Differ 2000;7:470–476. doi:10.1038/sj.cdd.4400678.

    Article  PubMed  CAS  Google Scholar 

  6. Allen JW, Eldadah BA, Faden AI. Beta-amyloid-induced apoptosis of cerebellar granule cells and cortical neurons: exacerbation by selective inhibition of group I metabotropic glutamate receptors. Neuropharmacology 1999;38:1243–1252.

    Article  PubMed  CAS  Google Scholar 

  7. Fei Z, Zhang X, Bai HM, Jiang XF, Wang XL. Metabotropic glutamate receptor antagonists and agonists: potential neuroprotectors in diffuse brain injury. J Clin Neurosci 2006;13:1023–1027.

    Article  PubMed  CAS  Google Scholar 

  8. Szydlowska K, Kaminska B, Baude A, Parsons CG, Danysz W. Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo. Eur J Pharmacol 2007;554:18–29.

    Article  PubMed  CAS  Google Scholar 

  9. Movsesyan VA, Stoica BA, Faden AI. MGLuR5 activation reduces beta-amyloid-induced cell death in primary neuronal cultures and attenuates translocation of cytochrome c and apoptosis-inducing factor. J Neurochem 2004;89:1528–1536.

    Article  PubMed  CAS  Google Scholar 

  10. Vincent AM, TenBroeke M, Maiese K. Metabotropic glutamate receptors prevent programmed cell death through the modulation of neuronal endonuclease activity and intracellular pH. Exp Neurol 1999;155:79–94. doi:10.1006/exnr.1998.6966.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu P, DeCoster MA, Bazan NG. Interplay among platelet-activating factor, oxidative stress, and group I metabotropic glutamate receptors modulates neuronal survival. J Neurosci Res 2004;77:525–531. doi:10.1002/jnr.20175.

    Article  PubMed  CAS  Google Scholar 

  12. Bao WL, Williams AJ, Faden AI, Tortella FC. Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res 2001;922:173–179.

    Article  PubMed  CAS  Google Scholar 

  13. Byrnes KR, Loane DJ, Stoica BA, Zhang J, Faden AI. Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J Neuroinflammation. 2012;9:43. doi:10.1186/1742-2094-9-43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Byrnes KR, Stoica B, Riccio A, Pajoohesh-Ganji A, Loane DJ, Faden AI. Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Ann Neurol 2009;66:63–74. doi:10.1002/ana.21673.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Chen T, Zhang L, Qu Y, Huo K, Jiang X, Fei Z. The selective mGluR5 agonist CHPG protects against traumatic brain injury in vitro and in vivo via ERK and Akt pathway. Int J Mol Med 2012;29:630–636. doi:10.3892/ijmm.2011.870.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Loane DJ, Stoica BA, Byrnes KR, Jeong W, Faden AI. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J Neurotrauma 2013;30:403–412. doi:10.1089/neu.2012.2589.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang JW, Wang HD, Cong ZX, Zhang XS, Zhou XM, Zhang DD. Activation of metabotropic glutamate receptor 5 reduces the secondary brain injury after traumatic brain injury in rats. Biochem Biophys Res Commun 2013;430:1016–1021. doi:10.1016/j.bbrc.2012.12.046.

    Article  PubMed  CAS  Google Scholar 

  18. Loane DJ, Stoica BA, Faden AI. Metabotropic glutamate receptor-mediated signaling in neuroglia. Wiley Interdiscip Rev Membr Transp Signal 2012;1:136–150. doi:10.1002/wmts.30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Byrnes KR, Stoica B, Loane DJ, Riccio A, Davis MI, Faden AI. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 2009;57:550–560. doi:10.1002/glia.20783.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 2009;284:15629-39. doi:10.1074/jbc.M806139200.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 2014;73:14–29. doi:10.1097/NEN.0000000000000021.

    Article  PubMed  CAS  Google Scholar 

  22. Homayoun H, Moghaddam B. Group 5 metabotropic glutamate receptors: role in modulating cortical activity and relevance to cognition. Eur J Pharmacol 2010;639:33–39. doi:10.1016/j.ejphar.2009.12.042.

    Article  PubMed  CAS  Google Scholar 

  23. Kinney GG, Burno M, Campbell UC, et al. Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 2003;306:116–123. doi: 10.1124/jpet.103.048702.

    Article  PubMed  CAS  Google Scholar 

  24. Lecourtier L, Homayoun H, Tamagnan G, Moghaddam B. Positive allosteric modulation of metabotropic glutarnate 5 (rnGlu5) receptors reverses N-methyl-d-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Biol Psychiatry 2007;62:739–746. doi: 10.1016/j.biopsych.2006.12.003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B. Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 2004;29:1259–1269. doi: 10.1038/sj.npp.1300417.

    Article  PubMed  CAS  Google Scholar 

  26. Kinney GG, O'Brien JA, Lemaire W, et al. A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther 2005;313:199–206. doi: 10.1124/jpet.104.079244.

    Article  PubMed  CAS  Google Scholar 

  27. Gravius A, Dekundy A, Nagel J, More L, Pietraszek M, Danysz W. Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. J Neural Transm 2008;115:1609–1619. doi: 10.1007/s00702-008-0098-4.

    Article  PubMed  CAS  Google Scholar 

  28. Gass JT, Olive MF. Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol Psychiatry 2009;65:717–20. doi: 10.1016/j.biopsych.2008.11.001.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010;639:47–58. doi:10.1016/j.ejphar.2010.01.029.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Ayala JE, Chen YL, Banko JL, et al. mGluR5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning. Neuropsychopharmacology 2009;34:2057–2071. doi: 10.1038/Npp.2009.30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Xue F, Stoica BA, Hanscom M, Kabadi SV, Faden AI. Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGluR5) attenuate microglial activation. CNS Neurol Disord Drug Targets 2013;13:558–566

    Article  Google Scholar 

  32. Rodriguez AL, Grier MD, Jones CK, et al. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol 2010;78:1105–1123. doi:10.1124/mol.110.067207.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Fox GB, Fan L, Levasseur RA, Faden AI. Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 1998;15:599–614.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao Z, Loane DJ, Murray MG 2nd, Stoica BA, Faden AI. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury. J Neurotrauma 2012;29:2475–2489. doi:10.1089/neu.2012.2511.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ. Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 2013;34:1397–1411. doi:10.1016/j.neurobiolaging.2012.11.013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Loane DJ, Pocivavsek A, Moussa CE, et al. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nature Med 2009;15:377–379. doi:10.1038/nm.1940.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009;4:399–418. doi:10.1007/s11481-009-9164-4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol 2009;40:139–156. doi:10.1007/s12035-009-8077-9.

    Article  PubMed  CAS  Google Scholar 

  39. de Paulis T, Hemstapat K, Chen Y, et al. Substituent effects of N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamides on positive allosteric modulation of the metabotropic glutamate-5 receptor in rat cortical astrocytes. J Med Chem 2006;49:3332–3344. doi:10.1021/jm051252j.

    Article  PubMed  Google Scholar 

  40. Noetzel MJ, Rook JM, Vinson PN, et al. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol Pharmacol 2012;81:120–133. doi:10.1124/mol.111.075184.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010;7:354–365.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Piers TM, Heales SJ, Pocock JM. Positive allosteric modulation of metabotropic glutamate receptor 5 down-regulates fibrinogen-activated microglia providing neuronal protection. Neurosci Lett 2011;505:140–145. doi:10.1016/j.neulet.2011.10.007.

    Article  PubMed  CAS  Google Scholar 

  43. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3:23–35. doi:10.1038/nri978nri978.

    Article  PubMed  CAS  Google Scholar 

  44. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:677–686.

    Article  PubMed  CAS  Google Scholar 

  45. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 2006;3:27. doi:10.1186/1742-2094-3-27.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 2007;27:10714–10721. doi:10.1523/JNEUROSCI.1922-07.2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marie Hanscom for expert technical assistance. This work was supported by a grant from the NIH/NINDS to AIF (5R01NS037313), and by a 2013 UMB Pilot & Exploratory Interdisciplinary Research (IDR) Award to B.S. and F.X.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan I. Faden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loane, D.J., Stoica, B.A., Tchantchou, F. et al. Novel mGluR5 Positive Allosteric Modulator Improves Functional Recovery, Attenuates Neurodegeneration, and Alters Microglial Polarization after Experimental Traumatic Brain Injury. Neurotherapeutics 11, 857–869 (2014). https://doi.org/10.1007/s13311-014-0298-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0298-6

Keywords

Navigation