Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes—structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol. 2015;81:2–10.
CAS
PubMed
Article
Google Scholar
Freyssinet JM, Toti F. Formation of procoagulant microparticles and properties. Thromb Res. 2010;125:46–8.
Article
CAS
Google Scholar
Flumenhaft R. Formation and fate of platelet microparticles. Blood Cell Mol Dis. 2006;36:182–7.
Article
CAS
Google Scholar
Horstman LL, Ahn . Platelet microparticles: a wide-angle perspective 1999;30:111–142.
Italiano JE, Mairuhu ATA, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol. 2010;17:578–84.
PubMed
PubMed Central
Article
Google Scholar
Joop K, Berckmans RJ, Nieuwland R, et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost. 2001;85:810–20.
CAS
PubMed
Google Scholar
Berckmans RJ, Neiuwland R, Boing AN, et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001;85:639–46.
CAS
PubMed
Google Scholar
Doeuvre L, Plawinski L, Toti F, Angles-Cano E. Cell-derived microparticles: a new challenge in neuroscience. J Neurochem. 2009;110:457–68.
CAS
PubMed
Article
Google Scholar
Tan KT, Lip GY. The potential role of platelet microparticles in atherosclerosis. Thromb Haemost. 2005;94:488–92.
CAS
PubMed
Google Scholar
Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004;124:376–84.
PubMed
Article
Google Scholar
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20:1487–95.
CAS
PubMed
Article
Google Scholar
Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology. 2005;20:22–7.
CAS
PubMed
Article
Google Scholar
Beaudoin AR, Grondin G. Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena. Bioch Biophys Acta 1991;1071: 203.
Fevrier B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16:415–21.
CAS
PubMed
Article
Google Scholar
Rak J. Microparticles in cancer. Semin Thromb Hemost. 2010;36:888–906.
CAS
PubMed
Article
Google Scholar
Voloshin T, Fremder E, Shaked Y. Small but mighty: microparticles as mediators of tumor progression. Cancer Microenviron. 2014;7:11–21.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lee TH, D’Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular ‘debris. Semin Immunopathol. 2011;33:455–67.
PubMed
Article
Google Scholar
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10:619–24.
CAS
PubMed
Article
Google Scholar
Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012.
Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6:267–83.
CAS
PubMed
Article
Google Scholar
Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanism and roles in immune responses. Traffic. 2011;12:1659–68.
CAS
PubMed
Article
Google Scholar
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes. J Biol Chem. 1987;262:9412–20.
CAS
PubMed
Google Scholar
Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 2005;118:3631–8.
CAS
PubMed
Article
Google Scholar
Ge R, Tan E, Sharghi-Namini S, Asada HH. Exosomes in cancer microenvironment and beyond: have we overlooked these extracellular messengers? Cancer Microenviron. 2012;5:323–32.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lotvall J, Valadi H. Cell to cell signalling via exosomes through esRNA. Cell Adhes Migr. 2007;1:156–8.
Article
Google Scholar
Mignot G, Roux S, Thery C, S_egura E, Zitvogel L. Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med. 2006;10:376–88.
CAS
PubMed
Article
Google Scholar
Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.
CAS
PubMed
Google Scholar
Chaput N, Théry C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33:419–40.
CAS
PubMed
Article
Google Scholar
Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Investig. 2004;34:392–401.
CAS
Article
Google Scholar
Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta. 2012.
Reiners KS, Dassler J, Coch CH, Pogge von Strandmann E. Role of exosomes released by dendritic cells and/or by tumor targets: regulation of NK cell plasticity. Front Immunol. 2014.
Hannafon BN, Ding W-Q. Intracellular communication by exosomederived microRNAs in cancer. Int J Mol Sci. 2013;14:14240–69.
PubMed
PubMed Central
Article
CAS
Google Scholar
Gelderman MP, Simak J. Flow cytmometric analysis of cell membrane microparticles. Methods Mol Biol. 2008;484:79–93.
CAS
PubMed
Article
Google Scholar
Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007;21:157–71.
CAS
PubMed
Article
Google Scholar
Falanga A, Tartari CA, Marchetti M. Microparticles in tumor progression. Thromb Res. 2012;129(Supplement 1):132–6.
Article
CAS
Google Scholar
Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli E, et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood. 2009;113:1112–21.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19:43–51.
CAS
PubMed
Article
Google Scholar
Shen B, Wu N, Yang JM, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem. 2011;286:14383–95.
CAS
PubMed
PubMed Central
Article
Google Scholar
Biscoe TJ, Stehbens WE. Ultrastructure of the carotid body. J Cell Biol. 196(30):563–78.
Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, Dignat-George F. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest. 1999;104:93–102.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 2009;28:1043–54.
CAS
PubMed
PubMed Central
Article
Google Scholar
Simons M, Raposo G. Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21:575–81.
CAS
PubMed
Article
Google Scholar
Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Tromb Haemost. 2009;101:439–45143.
CAS
Google Scholar
Morel O, Morel N, Jesel L, Freyssinet JM, Toti F. Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis. Semin Immunopathol. 2011;33:469–86.
CAS
PubMed
Article
Google Scholar
Lhermusier T, Chap H, Payrastre B. Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J Thromb Haemost. 2011;9:1883–91.
CAS
PubMed
Article
Google Scholar
Bevers EM, Williamson PL. Phospholipid scramblase: an update. FEBS Lett. 2010;584:2724–30.
CAS
PubMed
Article
Google Scholar
Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res. 2003;109:175–80.
CAS
PubMed
Article
Google Scholar
Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269–88.
CAS
PubMed
Article
Google Scholar
Basse F, Gaffet P, Bienvenue A. Correlation between inhibition of cytoskeleton proteolysis and anti-vesiculation effect of calpeptin during A23187-induced activation of human platelets: are vesicles shed by filopod fragmentation? Biochim Biophys Acta. 1994;1190:217–24.
CAS
PubMed
Article
Google Scholar
Fox JE, Austin CD, Boyles JK, Steffen PK. Role of the membranę skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol. 1990;111:483–93.
CAS
PubMed
Article
Google Scholar
Shcherbina A, Bretscher A, Kenney DM, E. R-O′D. Moesin, the major ERM protein of lymphocytes and platelets, differs from ezrin in its insensitivity to calpain. FEBS Lett. 1999;443:31–6.
CAS
PubMed
Article
Google Scholar
Weidmer T, Sanford JS, Cunningham M, Sims PJ. Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor. Biochemistry. 1990;29:623–32.
Article
Google Scholar
Pasquet JM, Dachary-Prigent J, Nurden AT. Microvesicle release is associated with extensive protein tyrosine dephosphorylation in platelets stimulated by A23187 or a mixture of thrombin and collagen. Biochem J. 1998;333:591–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wiedmer T, Sims PJ. Participation of protein kinases in complement C5b-9-induced shedding of platelet plasma membrane vesicles. Blood. 1991;78:2880–6.
CAS
PubMed
Google Scholar
Rand ML, Wang H, Bang KW, Packham MA, Freedman J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb Haemost. 2006;4:1621–3.
CAS
PubMed
Article
Google Scholar
Bode AP, Miller DT. Analysis of platelet factor 3 in platelet concentrates stored for transfusion. Vox Sang. 1986;51:299–305.
CAS
PubMed
Article
Google Scholar
Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9:4997–5000.
CAS
PubMed
Article
Google Scholar
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92.
CAS
PubMed
Article
Google Scholar
Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166:7309–18.
PubMed
Article
Google Scholar
Peche H, Heslan M, Usal C, Amigorena S, Cuturi MC. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation. 2003;76:1503–10.
CAS
PubMed
Article
Google Scholar
Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Möbius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W. Proteomic and biochemical analyses of human B cell derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem. 2003;278:10963–72.
CAS
PubMed
Article
Google Scholar
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.
CAS
PubMed
Article
Google Scholar
George JN, Pickett EB, Saucerman S, McEver RP, Kuniki TJ, Kieffer N, Newman PJ. Platelet surface glycoproteins: studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest. 1986;78:340–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tschoepe D, Spangenberg P, Esser J, Schwippert B, Kehrel B, Roesen P, Gries FA. Flow-cytometric detection of surface membrane alterations and concommitant changes in the cytoskeletal actin status of activated platelets. Cytometry. 1990;11:652–6.
CAS
PubMed
Article
Google Scholar
Addo JB, Bray PF, Grigoryev D, Faraday N, Goldschmidt- Clermont PJ. Surface recruitment but not activation of integrin aIIbb3 (GP IIb:IIIa) requires a functional actin cytoskeleton. Arterioscl Thromb Vasc Biol. 1995;15:1466–73.
CAS
PubMed
Article
Google Scholar
Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30:450–9.
CAS
PubMed
Article
Google Scholar
Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113:752–60.
CAS
PubMed
Article
Google Scholar
Clemetson KJ, McGregor JL. Characterization of platelet glycoproteins. In: McIntyre DE, Gordon JL, editors. Characterization of platelet glycoproteins Amsterdam: Elsevier, 1987:1–32.
Kunicki TJ, Newman PJ. The molecular immunology of human platelet proteins. Blood. 1992;80:1386–404.
CAS
PubMed
Google Scholar
JL MG. The role of human platelet membrane receptors in inflammation. In: Joseph M, editor. Immunopharmacology of platelets, handbook of immunopharmacology. New York: Academic Press; 1995. p. 67.
Google Scholar
Holme PA, Solum NO, Brosstad F, Pedersen T, Kveine M. Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thromb Haemost. 1998;79:389–94.
CAS
PubMed
Google Scholar
Iwamoto S, Kawasaki T, Kambayashi J, Ariyoshi H, Monden M. Platelet microparticles: a carrier of platelet-activating factor? Biochem Biophys Res Commun. 1996;218:940–4.
CAS
PubMed
Article
Google Scholar
Barry OP, FitzGerald GA. Mechanisms of cellular activation by platelet microparticles. Thromb Haemost. 1999;82:794–800.
CAS
PubMed
Google Scholar
Barry OP, Pratico D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998;102:136–44.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mickelson JK, Lakkis NM, Villarreal-Levy G, Hughes BJ, Smith CW. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J Am Coll Cardiol. 1996;28:345–53.
CAS
PubMed
Article
Google Scholar
Sabatier F, Roux V, Anfosso F, Camoin L, Sampol J, Dignat- George F. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood. 2002;99:3962–70.
CAS
PubMed
Article
Google Scholar
Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 2000;19:3365–74.
Google Scholar
Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94:3791–9.
CAS
PubMed
Google Scholar
Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002;3:207–14.
CAS
PubMed
Article
Google Scholar
Neumann FJ, Marx N, Gawaz M, Brand K, Ott I, Rokitta C, Sticherling C, Meinl C, May A, Schomig A. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation. 1997;95:2387–94.
CAS
PubMed
Article
Google Scholar
Seiki M. Membrane-type 1matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett. 2003;194:1–11.
CAS
PubMed
Article
Google Scholar
Jaremo P, Sandberg-Gertzen H. Platelet density and size in inflammatory bowel disease. Thromb Haemost. 1996;75:560–1.
CAS
PubMed
Google Scholar
Nawrocki B, Polette M, Marchand V, Monteau M, Gillery P, Tournier JM, Birembaut P. Expression of matrix metalloproteinases and their inhibitors in human bronchopulmonary carcinomas: quantificative and morphological analyses. Int J Cancer. 1997;72:556–64.
CAS
PubMed
Article
Google Scholar
Tokuraku M, Sato H, Murakami S, Okada Y, Watanabe Y, Seiki M. Activation of the precursor of gelatinase A/72 kDa type IV collagenase/ MMP-2 in lung carcinomas correlates with the expression of membrane-type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int J Cancer. 1995;64:355–9.
CAS
PubMed
Article
Google Scholar
Hrachovinova I, Cambien B, Hafezi-Moghadam A, Kappelmayer J, Camphausen RT, Widom A, Xia L, Kazazian HH. Jr, Schaub RG, McEver RP, Wagner DD. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 2003;9:1020–1025.
Salaj P, Marinov I, Markova M, Pohlreich D, Cetkovsky P, Hrachovinova I. Thrombelastography monitoring of platelet substitution therapy and rFVIIa administration in haemato-oncological patients with severe thrombocytopenia. Prague Med Rep. 2004;105:311–7.
CAS
PubMed
Google Scholar
Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR, Chisari FV, Ruggeri ZM, Guidotti LG. Platelets mediate cytotoxic T lymphocyte–induced liver damage. Nat Med. 2005;11:1167–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tao J. Effects of cyclic AMP, cyclic GMP, and protein kinase C on calcium homeostasis and mobilization in normal and thrombotic platelets. Ph.D. Thesis, Univ. of Miami, Coral Gables, FL, 1994.
Opartkiattikul N, Funahara T, Hijikata-Okonomiya A, Yamaguchi N, Talad P. Development of a new method for detection of platelet factor 3 like activity. Southeast Asian J Trop Med Public Health. 1992;23(Suppl 2):47–51.
PubMed
Google Scholar
Behnke O, Forer A. Blood platelet heterogeneity: evidence for two classes of platelets in man and rat. Br J Haematol. 1993;84:686–93.
CAS
PubMed
Article
Google Scholar
Hijikata-Okunomiya A. A new method for the determination of prothrombine in human plasma. Thromb Res 1990;57:705–715.
Frojmovic M, Wong T. Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry: II. Platelet size-dependent subpopulations. Biophys J. 1991;59:828–37.
CAS
PubMed
PubMed Central
Article
Google Scholar
English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J. 2000;14:2255–65.
CAS
PubMed
Article
Google Scholar
Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN, Ratajczak MZ. Platelet and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4- HIV. AIDS. 2003;17:33–42.
CAS
PubMed
Article
Google Scholar
Baj-Krzyworzeka M, Szatanek R, Węglarczyk K, Baran J, Zembala M. Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett. 2007;113:76–82.
CAS
PubMed
Article
Google Scholar
Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 2009;125:1595–160.
CAS
PubMed
PubMed Central
Article
Google Scholar
Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Brański P, Ratajczak MZ, Zembala M. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother. 2006;55:808–18.
CAS
PubMed
Article
Google Scholar
Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1:98–110.
PubMed
Google Scholar
Meckes DG Jr, Raab-Traub N. Microvesicles and viral infection. J Virol 2011;85:12844–12854.
Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A. Cellular prion protein is released on exosomes from activated platelets. Blood. 2006;107:3907–11.
CAS
PubMed
Article
Google Scholar
Rozmyslowicz T, Majka M, Kijowski J, Gaulton G, Ratajczak M.Z. A new role of platelet – and megakaryocyte-derived microparticles (MP) in HIV infection. Blood 2001;98:786a.
Mack M, Kleinschmidt A, Bruhl H, et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles. A mechanism for cellular human immunodeficiency virus 1 infection. Nat Med. 2000;6:769–75.
CAS
PubMed
Article
Google Scholar
Fritzsching B, Schwer B, Kartenbeck J, et al. Release and intercellular transfer of cell surface CD81 via microparticles. J Immunol. 2002;169:5531–7.
CAS
PubMed
Article
Google Scholar
Admyre C, Johansson SM, Paulie S, Gabrielsson S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol. 2006;36:1772–81.
CAS
PubMed
Article
Google Scholar
Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2006;26:112–6.
CAS
PubMed
Article
Google Scholar
Michelson AD, Furman MI. Laboratory markers of platelet activation and their clinical significance. Curr Opin Hematol. 1999;6:342–8.
CAS
PubMed
Article
Google Scholar
Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008;111:5028–36.
CAS
PubMed
PubMed Central
Article
Google Scholar
Distler JH, Pisetsky DS, Huber LC, Kalden JR, Gay S, Distler O. Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum. 2005;52:3337–48.
CAS
PubMed
Article
Google Scholar
Forlow SB, McEver RP, Nollert MU. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood. 2000;95:1317–23.
CAS
PubMed
Google Scholar
Giusti I, D’Ascenzo S, Millimaggi D, Taraboletti G, Carta G, Franceschini N, Pavan A, Dolo V. Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. Neoplasia. 2008;10:481–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
English D, Garcia JGN, Brindley DN. Platelet-released phospholipids link haemostasis and angiogenesis. Cardiovasc Res. 2001.
Barry OP, Kazanietz MG, Pratico D, FitzGerald GA. Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2- dependent prostaglandin formation via a protein kinase C/ mitogen-activated protein kinase-dependent pathway. J Biol Chem. 1999;274:7545–56.
CAS
PubMed
Article
Google Scholar
Brunetti M, Martelli N, Manarini S, Mascetra N, Musiani P, Cerletti C, et al. Polymorphonuclear leukocyte apoptosis is inhibited by platelet-released mediators, role of TGFbeta-1. Thromb Haemost. 2000;84:478–83.
CAS
PubMed
Google Scholar
Bakewell SJ, Nestor P, Prasad S, Tomasson MH, Dowland N, Mehrotra M, Scarborough R, Kanter J, Abe K, Phillips D, Weilbaecher KN. Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc Natl Acad Sci U S A. 2003;100:14205–10.
CAS
PubMed
PubMed Central
Article
Google Scholar
Honn KV, Tang DG, Chen YQ. Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost. 1992;18:392–415.
CAS
PubMed
Article
Google Scholar
McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000;105:433–40.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zucker S, Pei D, Cao J, Lopez-Otin C. Membrane type-matrix metalloproteinases (MT-MMP. Curr Top Dev Biol. 2003;54:1–74.
CAS
PubMed
Article
Google Scholar
Jansen F, Yang X, Hoyer FF, Paul K, Heiermann N, Becher MU, Abu Hussein N, Kebschull M, Bedorf J, Franklin BS, Latz E, Nickenig G, Werner N. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis. Arterioscler Thromb Vasc Biol. 2012;32:1925–35.
CAS
PubMed
Article
Google Scholar
Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. MicroRNA- 126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol. 2013;33:449–54.
CAS
PubMed
Article
Google Scholar
Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res. 2012;93:633–44.
CAS
PubMed
PubMed Central
Article
Google Scholar
Christianson HC, Svensson KJ, Beltinga M. Exosome and microvesicle mediated phene transfer in mammalian cells. Semin Cancer Biol. 2014;28:31–8.
CAS
PubMed
Article
Google Scholar
Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012:7 .e50999
Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 2012;227:658–67.
CAS
PubMed
Article
Google Scholar
Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A. 2009;106:3794–9.
PubMed
PubMed Central
Article
Google Scholar
Mostefai HA, Andriantsitohaina R, MC M’n. Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res. 2008;57:311–20.
CAS
PubMed
Google Scholar
Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood. 2009;114:723–32.
CAS
PubMed
Article
Google Scholar
Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005;67:30–8.
CAS
PubMed
Article
Google Scholar
Martinez MC, Andriantsitohaina R. Microparticles in angiogenesis: therapeutic potential. Circ Res. 2011;109:110–9.
CAS
PubMed
Article
Google Scholar
Falanga A, Marchetti M, Vignoli A, Balducci D. Clotting mechanisms and cancer: implications in thrombus formation and tumor progression. Clin Adv Hematol Oncol. 2003;1:673–8.
PubMed
Google Scholar
van der Meel R1, Fens MH1, Vader P2, van Solinge WW1, Eniola-Adefeso O3, Schiffelers RM4. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 2014;195:72–85. doi: 10.1016/j.jconrel.2014.07.049.
Helley D, Banu E, Bouziane A, Banu A, Scotte F, Fischer AM, Oudard S. Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur Urol. 2009;56:479–84. doi:10.1016/j.eururo.2008.06.038.
CAS
PubMed
Article
Google Scholar
Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Ryu KW, Bae JM, Kim S. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer. 2003;39:184–91.
CAS
PubMed
Article
Google Scholar