Skip to main content

Advertisement

Log in

Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Plasma membrane remodeling characterized by phosphatidylserine exposure and consecutive microparticle (MP) shedding is an ubiquitous process enabling the clearance of senescent cells and the maintenance of tissue homeostasis. MPs are released as fragments from the budding plasma membrane of virtually all eukaryotic cell types undergoing stimulation or apoptosis and may be considered a broad primitive response to stress. MP release is dependent on cytoskeleton degradation pathways involving caspases, requires a sustained increase in intracellular calcium triggering K+ and Cl efflux and is possibly tuned by mitochondria permeability changes. Because they convey a broad spectrum of bioactive molecules, circulating MPs may serve as shuttles promoting cellular cross talk in various pathological settings such as inflammation or immunity-induced thrombotic disorders. If the drastic shedding of procoagulant MPs appears clearly noxious in thrombotic disorders or in some models of inflammation-induced coagulopathy, this does not necessarily endorse their invariably harmful nature. In the vessel, endothelial cytoprotection reported in the early regulation of inflammation-induced coagulopathy is emblematic of the beneficial effects provided by MPs. In addition, MPs would prove beneficial in the prevention of blood leakage. Because of their multiple properties that are characteristic of a private response of the parental cell, MPs could act as cytoprotective and anti-inflammatory agents through the delivery of activated protein C or annexin 1 and could contribute to the limitation of vascular hyporeactivity. Owing to their ability to cargo bioactive signals, MPs could be viewed as an integrated communication network enabling the coordination of complex cellular responses in biological fluids and the maintenance of the homeostasis equation. A better understanding of the molecular mechanisms involved in MP shedding would pave the way of a new pharmacological approach aiming at the control of MP-driven cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Freyssinet JM, Toti F, Hugel B et al (1999) Apoptosis in vascular disease. Thromb Haemost 82:727–735

    PubMed  CAS  Google Scholar 

  2. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    PubMed  CAS  Google Scholar 

  3. Bevers EM, Williamson PL (2010) Phospholipid scramblase: an update. FEBS Lett 584:2724–2730

    PubMed  CAS  Google Scholar 

  4. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27

    CAS  Google Scholar 

  5. Seigneuret M, Zachowski A, Hermann A, Devaux PF (1984) Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry 23:4271–4275

    PubMed  CAS  Google Scholar 

  6. Smeets EF, Comfurius P, Bevers EM, Zwaal RF (1994) Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochim Biophys Acta 1195:281–286

    PubMed  Google Scholar 

  7. Williamson P, Bevers EM, Smeets EF, Comfurius P, Schlegel RA, Zwaal RF (1995) Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets. Biochemistry 34:10448–10455

    PubMed  CAS  Google Scholar 

  8. Comfurius P, Williamson P, Smeets EF, Schlegel RA, Bevers EM, Zwaal RF (1996) Reconstitution of phospholipid scramblase activity from human blood platelets. Biochemistry 35:7631–7634

    PubMed  CAS  Google Scholar 

  9. Sinauridze EI, Kireev DA, Popenko NY et al (2007) Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 97:425–434

    PubMed  CAS  Google Scholar 

  10. Weiss HJ, Vicic WJ, Lages BA, Rogers J (1979) Isolated deficiency of platelet procoagulant activity. Am J Med 67:206–213

    PubMed  CAS  Google Scholar 

  11. Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM (1996) Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 87:1409–1415

    PubMed  CAS  Google Scholar 

  12. Brooks MB, Catalfamo JL, Brown HA, Ivanova P, Lovaglio J (2002) A hereditary bleeding disorder of dogs caused by a lack of platelet procoagulant activity. Blood 99:2434–2441

    PubMed  CAS  Google Scholar 

  13. Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost 7:1057–1066

    PubMed  CAS  Google Scholar 

  14. Braun A, Varga-Szabo D, Kleinschnitz C et al (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113:2056–2063

    PubMed  CAS  Google Scholar 

  15. Varga-Szabo D, Braun A, Kleinschnitz C et al (2008) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205:1583–1591

    PubMed  CAS  Google Scholar 

  16. Muik M, Frischauf I, Derler I et al (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    PubMed  CAS  Google Scholar 

  17. Le Goff W, Peng DQ, Settle M, Brubaker G, Morton RE, Smith JD (2004) Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler Thromb Vasc Biol 24:2155–2161

    PubMed  Google Scholar 

  18. Lorenzi I, von Eckardstein A, Cavelier C, Radosavljevic S, Rohrer L (2008) Apolipoprotein A-I but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI. J Mol Med 86:171–183

    PubMed  CAS  Google Scholar 

  19. Karwatsky J, Ma L, Dong F, Zha X (2009) Cholesterol efflux to apoA-I in ABCA1-expressing cells is regulated by Ca2+ dependent-calcineurin signaling. J Lipid Res 51(5):1144–1156

    PubMed  Google Scholar 

  20. Cauwenberghs S, Feijge MA, Harper AG, Sage SO, Curvers J, Heemskerk JW (2006) Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton. FEBS Lett 580:5313–5320

    PubMed  CAS  Google Scholar 

  21. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352

    PubMed  CAS  Google Scholar 

  22. Sapet C, Simoncini S, Loriod B et al (2006) Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 108:1868–1876

    PubMed  CAS  Google Scholar 

  23. Simoncini S, Njock MS, Robert S et al (2009) TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation. Circ Res 104:943–951

    PubMed  CAS  Google Scholar 

  24. Michel V, Bakovic M (2007) Lipid rafts in health and disease. Biol Cell 99:129–140

    PubMed  CAS  Google Scholar 

  25. Kunzelmann-Marche C, Freyssinet JM, Martinez MC (2002) Loss of plasma membrane phospholipid asymmetry requires raft integrity. Role of transient receptor potential channels and ERK pathway. J Biol Chem 277:19876–19881

    PubMed  CAS  Google Scholar 

  26. Connor DE, Exner T, Ma DD, Joseph JE (2010) The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 103:1044–1052

    PubMed  CAS  Google Scholar 

  27. Perez-Pujol S, Marker PH, Key NS (2007) Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer. Cytom A 71:38–45

    Google Scholar 

  28. Baj-Krzyworzeka M, Majka M, Pratico D et al (2002) Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30:450–459

    PubMed  CAS  Google Scholar 

  29. Elliott JI, Sardini A, Cooper JC et al (2006) Phosphatidylserine exposure in B lymphocytes: a role for lipid packing. Blood 108:1611–1617

    PubMed  CAS  Google Scholar 

  30. Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goni FM (2003) Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 278:37169–37174

    PubMed  CAS  Google Scholar 

  31. Devaux PF, Lopez-Montero I, Bryde S (2006) Proteins involved in lipid translocation in eukaryotic cells. Chem Phys Lipids 141:119–132

    PubMed  CAS  Google Scholar 

  32. Lang F, Gulbins E, Lang PA, Zappulla D, Foller M (2010) Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 26:21–28

    PubMed  CAS  Google Scholar 

  33. Elliott JI, Higgins CF (2003) IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. EMBO Rep 4:189–194

    PubMed  CAS  Google Scholar 

  34. Skals M, Jensen UB, Ousingsawat J, Kunzelmann K, Leipziger J, Praetorius HA (2010) Escherichia coli alpha-hemolysin triggers shrinkage of erythrocytes via K(Ca)3.1 and TMEM16A channels with subsequent phosphatidylserine exposure. J Biol Chem 285:15557–15565

    PubMed  CAS  Google Scholar 

  35. Wolfs JL, Wielders SJ, Comfurius P et al (2006) Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel. Blood 108(7):2223–2228

    PubMed  CAS  Google Scholar 

  36. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    PubMed  CAS  Google Scholar 

  37. Castoldi E, Collins PW, Williamson PL, Bevers EM (2011) Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 117(16):4399–4400

    Google Scholar 

  38. Bucki R, Pastore JJ, Giraud F, Janmey PA, Sulpice JC (2006) Involvement of the Na+/H + exchanger in membrane phosphatidylserine exposure during human platelet activation. Biochim Biophys Acta 1761:195–204

    PubMed  CAS  Google Scholar 

  39. Leytin V, Allen DJ, Mutlu A, Gyulkhandanyan AV, Mykhaylov S, Freedman J (2009) Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Lab Invest 89:374–384

    PubMed  CAS  Google Scholar 

  40. Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160

    PubMed  CAS  Google Scholar 

  41. Dale GL, Friese P (2006) Bax activators potentiate coated-platelet formation. J Thromb Haemost 4:2664–2669

    PubMed  CAS  Google Scholar 

  42. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2008) Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost 6:1780–1788

    PubMed  CAS  Google Scholar 

  43. Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    PubMed  CAS  Google Scholar 

  44. Brooks M, Etter K, Catalfamo J, Brisbin A, Bustamante C, Mezey J (2010) A genome-wide linkage scan in German shepherd dogs localizes canine platelet procoagulant deficiency (Scott syndrome) to canine chromosome 27. Gene 450:70–75

    PubMed  CAS  Google Scholar 

  45. Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS (2003) Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 109:175–180

    PubMed  CAS  Google Scholar 

  46. Bernimoulin M, Waters EK, Foy M et al (2009) Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost 7:1019–1028

    PubMed  CAS  Google Scholar 

  47. Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057

    PubMed  CAS  Google Scholar 

  48. Giesen PL, Rauch U, Bohrmann B et al (1999) Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 96:2311–2315

    PubMed  CAS  Google Scholar 

  49. Ettelaie C, Collier ME, James NJ, Li C (2007) Induction of tissue factor expression and release as microparticles in ECV304 cell line by Chlamydia pneumoniae infection. Atherosclerosis 190:343–351

    PubMed  CAS  Google Scholar 

  50. Kushak RI, Nestoridi E, Lambert J, Selig MK, Ingelfinger JR, Grabowski EF (2005) Detached endothelial cells and microparticles as sources of tissue factor activity. Thromb Res 116:409–419

    PubMed  CAS  Google Scholar 

  51. Morel O, Ohlmann P, Epailly E et al (2008) Endothelial cell activation contributes to the release of procoagulant microparticles during acute cardiac allograft rejection. J Heart Lung Transplant 27:38–45

    PubMed  Google Scholar 

  52. Ramacciotti E, Hawley AE, Farris DM et al (2009) Leukocyte- and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis. Thromb Haemost 101:748–754

    PubMed  CAS  Google Scholar 

  53. Morel O, Pereira B, Averous G et al (2009) Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis 204:636–641

    PubMed  CAS  Google Scholar 

  54. Morel N, Morel O, Petit L et al (2008) Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. J Trauma 64:698–704

    PubMed  Google Scholar 

  55. Smalheiser NR (2009) Do neural cells communicate with endothelial cells via secretory exosomes and microvesicles? Cardiovasc Psychiatry Neurol 2009:383086

    PubMed  Google Scholar 

  56. van Beers EJ, Schaap MC, Berckmans RJ et al (2009) Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 94:1513–1519

    PubMed  Google Scholar 

  57. Pankoui Mfonkeu JB, Gouado I, Fotso Kuate H et al (2010) Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria. PLoS One 5:e13415

    PubMed  Google Scholar 

  58. Mesri M, Altieri DC (1999) Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem 274:23111–23118

    PubMed  CAS  Google Scholar 

  59. Essayagh S, Xuereb JM, Terrisse AD, Tellier-Cirioni L, Pipy B, Sie P (2007) Microparticles from apoptotic monocytes induce transient platelet recruitment and tissue factor expression by cultured human vascular endothelial cells via a redox-sensitive mechanism. Thromb Haemost 98:831–837

    PubMed  CAS  Google Scholar 

  60. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25:1512–1518

    PubMed  CAS  Google Scholar 

  61. Bakouboula B, Morel O, Faure A et al (2008) Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 177:536–543

    PubMed  CAS  Google Scholar 

  62. Diehl P, Aleker M, Helbing T, et al (2010) Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis (in press)

  63. Polgar J, Matuskova J, Wagner DD (2005) The P-selectin, tissue factor, coagulation triad. J Thromb Haemost 3:1590–1596

    PubMed  CAS  Google Scholar 

  64. Hrachovinova I, Cambien B, Hafezi-Moghadam A et al (2003) Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 9:1020–1025

    PubMed  CAS  Google Scholar 

  65. Del Conde I, Nabi F, Tonda R, Thiagarajan P, Lopez JA, Kleiman NS (2005) Effect of P-selectin on phosphatidylserine exposure and surface-dependent thrombin generation on monocytes. Arterioscler Thromb Vasc Biol 25:1065–1070

    PubMed  Google Scholar 

  66. Celi A, Lorenzet R, Furie BC, Furie B (2004) Microparticles and a P-selectin-mediated pathway of blood coagulation. Dis Markers 20:347–352

    PubMed  CAS  Google Scholar 

  67. Celi A, Pellegrini G, Lorenzet R et al (1994) P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA 91:8767–8771

    PubMed  CAS  Google Scholar 

  68. Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B (2002) Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8:1175–1181

    PubMed  CAS  Google Scholar 

  69. Falati S, Liu Q, Gross P et al (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197:1585–1598

    PubMed  CAS  Google Scholar 

  70. Thomas GM, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C (2009) Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 206:1913–1927

    PubMed  CAS  Google Scholar 

  71. Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99:348–353

    PubMed  CAS  Google Scholar 

  72. Llorente-Cortes V, Otero-Vinas M, Camino-Lopez S, Llampayas O, Badimon L (2004) Aggregated low-density lipoprotein uptake induces membrane tissue factor procoagulant activity and microparticle release in human vascular smooth muscle cells. Circulation 110:452–459

    PubMed  CAS  Google Scholar 

  73. Mayr M, Grainger D, Mayr U et al (2009) Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet 2:379–388

    PubMed  CAS  Google Scholar 

  74. Nemerson Y (2002) A simple experiment and a weakening paradigm: the contribution of blood to propensity for thrombus formation. Arterioscler Thromb Vasc Biol 22:1369

    PubMed  Google Scholar 

  75. Chou J, Mackman N, Merrill-Skoloff G, Pedersen B, Furie BC, Furie B (2004) Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood 104:3190–3197

    PubMed  CAS  Google Scholar 

  76. Day SM, Reeve JL, Pedersen B et al (2005) Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 105:192–198

    PubMed  CAS  Google Scholar 

  77. Leroyer AS, Rautou PE, Silvestre JS et al (2008) CD40 ligand + microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol 52:1302–1311

    PubMed  CAS  Google Scholar 

  78. Virmani R, Kolodgie FD, Burke AP et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061

    PubMed  CAS  Google Scholar 

  79. Mause SF, Ritzel E, Liehn EA et al (2010) Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 122:495–506

    PubMed  Google Scholar 

  80. Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160:673–680

    PubMed  CAS  Google Scholar 

  81. Dejouvencel T, Doeuvre L, Lacroix R et al (2010) Fibrinolytic cross-talk: a new mechanism for plasmin formation. Blood 115:2048–2056

    PubMed  CAS  Google Scholar 

  82. Doeuvre L, Plawinski L, Goux D, Vivien D, Angles-Cano E (2010) Plasmin on adherent cells: from microvesiculation to apoptosis. Biochem J 432:365–373

    PubMed  CAS  Google Scholar 

  83. Lacroix R, Sabatier F, Mialhe A et al (2007) Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 110:2432–2439

    PubMed  CAS  Google Scholar 

  84. Canault M, Leroyer AS, Peiretti F et al (2007) Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am J Pathol 171:1713–1723

    PubMed  CAS  Google Scholar 

  85. Satta N, Freyssinet JM, Toti F (1997) The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide. Br J Haematol 96:534–542

    PubMed  CAS  Google Scholar 

  86. Sabatier F, Roux V, Anfosso F, Camoin L, Sampol J, Dignat-George F (2002) Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 99:3962–3970

    PubMed  CAS  Google Scholar 

  87. Kasthuri RS, Taubman MB, Mackman N (2009) Role of tissue factor in cancer. J Clin Oncol 27:4834–4838

    PubMed  CAS  Google Scholar 

  88. Manly DA, Boles J, Mackman N (2010) Role of tissue factor in venous thrombosis. Annu Rev Physiol (in press)

  89. Manly DA, Wang J, Glover SL et al (2010) Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res 125:511–512

    PubMed  CAS  Google Scholar 

  90. Zhou J, May L, Liao P, Gross PL, Weitz JI (2009) Inferior vena cava ligation rapidly induces tissue factor expression and venous thrombosis in rats. Arterioscler Thromb Vasc Biol 29:863–869

    PubMed  CAS  Google Scholar 

  91. Szalony JA, Suleymanov OD, Salyers AK et al (2003) Administration of a small molecule tissue factor/factor VIIa inhibitor in a non-human primate thrombosis model of venous thrombosis: effects on thrombus formation and bleeding time. Thromb Res 112:167–174

    PubMed  CAS  Google Scholar 

  92. Ay C, Simanek R, Vormittag R et al (2008) High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 112:2703–2708

    PubMed  CAS  Google Scholar 

  93. Zwicker JI, Liebman HA, Neuberg D et al (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840

    PubMed  CAS  Google Scholar 

  94. Tesselaar ME, Romijn FP, van der Linden IK, Bertina RM, Osanto S (2009) Microparticle-associated tissue factor activity in cancer patients with and without thrombosis. J Thromb Haemost 7:1421–1423

    PubMed  CAS  Google Scholar 

  95. Bulut D, Maier K, Bulut-Streich N, Borgel J, Hanefeld C, Mugge A (2008) Circulating endothelial microparticles correlate inversely with endothelial function in patients with ischemic left ventricular dysfunction. J Card Fail 14:336–340

    PubMed  CAS  Google Scholar 

  96. Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G (2005) Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 26:112

    PubMed  Google Scholar 

  97. Pfister SL (2004) Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension 43:428–433

    PubMed  CAS  Google Scholar 

  98. Martin S, Tesse A, Hugel B et al (2004) Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 109:1653–1659

    PubMed  Google Scholar 

  99. Essayagh S, Brisset AC, Terrisse AD et al (2005) Microparticles from apoptotic vascular smooth muscle cells induce endothelial dysfunction, a phenomenon prevented by beta3-integrin antagonists. Thromb Haemost 94:853–858

    PubMed  CAS  Google Scholar 

  100. Hugel B, Socie G, Vu T et al (1999) Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood 93:3451–3456

    PubMed  CAS  Google Scholar 

  101. Jy W, Horstmann LL, Arce M, Ahn YS (1992) Clinical significance of platelet microparticles in autoimmune thrombocytopenias. J Lab Clin Med 119:334–345

    PubMed  CAS  Google Scholar 

  102. Proulle V, Hugel B, Guillet B et al (2004) Injection of recombinant activated factor VII can induce transient increase in circulating procoagulant microparticles. Thromb Haemost 91:873–878

    PubMed  CAS  Google Scholar 

  103. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB (2009) Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma 66:S69–S76

    PubMed  Google Scholar 

  104. Morel N, Delaunay F, Dabadie P, Averous G, Morel O (2010) Damage control resuscitation using warm fresh whole blood: a paramount role for leukocytes and derived microparticles in the prevention of coagulation abnormalities? J Trauma 68:1266–1267, author reply 1267

    PubMed  Google Scholar 

  105. Huisse MG, Pease S, Hurtado-Nedelec M et al (2008) Leukocyte activation: the link between inflammation and coagulation during heatstroke. A study of patients during the 2003 heat wave in Paris. Crit Care Med 36:2288–2295

    PubMed  CAS  Google Scholar 

  106. Satta N, Toti F, Feugeas O et al (1994) Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 153:3245–3255

    PubMed  CAS  Google Scholar 

  107. Wang JG, Manly D, Kirchhofer D, Pawlinski R, Mackman N (2009) Levels of microparticle tissue factor activity correlate with coagulation activation in endotoxemic mice. J Thromb Haemost 7:1092–1098

    PubMed  CAS  Google Scholar 

  108. Stahl AL, Sartz L, Nelsson A, Bekassy ZD, Karpman D (2009) Shiga toxin and lipopolysaccharide induce platelet-leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS ONE 4:e6990

    PubMed  Google Scholar 

  109. Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE (2003) Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 188:1618–1629

    PubMed  CAS  Google Scholar 

  110. Aras O, Shet A, Bach RR et al (2004) Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 103:4545–4553

    PubMed  CAS  Google Scholar 

  111. Barry OP, Pratico D, Lawson JA, FitzGerald GA (1997) Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 99:2118–2127

    PubMed  CAS  Google Scholar 

  112. Mesri M, Altieri DC (1998) Endothelial cell activation by leukocyte microparticles. J Immunol 161:4382–4387

    PubMed  CAS  Google Scholar 

  113. Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J (2001) High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 158:277–287

    PubMed  CAS  Google Scholar 

  114. Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renne T (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139:1143–1156

    Google Scholar 

  115. Jy W, Mao WW, Horstman L, Tao J, Ahn YS (1995) Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells Mol Dis 21:217–231, discussion 231a

    PubMed  CAS  Google Scholar 

  116. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15:825–835

    PubMed  CAS  Google Scholar 

  117. Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer JM, Burger D (2008) Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol 83:921–927

    PubMed  CAS  Google Scholar 

  118. Carpintero R, Gruaz L, Brandt KJ et al (2010) HDL interfere with the binding of T cell microparticles to human monocytes to inhibit pro-inflammatory cytokine production. PLoS One 5:e11869

    PubMed  Google Scholar 

  119. Berckmans RJ, Nieuwland R, Kraan MC et al (2005) Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther 7:R536–R544

    PubMed  CAS  Google Scholar 

  120. Berckmans RJ, Nieuwland R, Tak PP et al (2002) Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 46:2857–2866

    PubMed  CAS  Google Scholar 

  121. Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583

    PubMed  CAS  Google Scholar 

  122. Combes V, Taylor TE, Juhan-Vague I et al (2004) Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. JAMA 291:2542–2544

    PubMed  CAS  Google Scholar 

  123. Combes V, Coltel N, Alibert M et al (2005) ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol 166:295–302

    PubMed  CAS  Google Scholar 

  124. Faille D, Combes V, Mitchell AJ et al (2009) Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB J 23:3449–3458

    PubMed  CAS  Google Scholar 

  125. Densmore JC, Signorino PR, Ou J et al (2006) Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 26:464–471

    PubMed  CAS  Google Scholar 

  126. Buesing KL, Densmore JC, Kaul S, et al (2010) Endothelial Microparticles Induce Inflammation in Acute Lung Injury. J Surg Res (in press)

  127. Gambim MH, do Carmo Ade O, Marti L, Verissimo-Filho S, Lopes LR, Janiszewski M (2007) Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care 11:R107

    PubMed  Google Scholar 

  128. Mortaza S, Martinez MC, Baron-Menguy C et al (2009) Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats. Crit Care Med 37:2045–2050

    PubMed  CAS  Google Scholar 

  129. Abid Hussein MN, Boing AN, Sturk A, Hau CM, Nieuwland R (2007) Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost 98:1096–1107

    PubMed  Google Scholar 

  130. Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104:2543–2548

    PubMed  CAS  Google Scholar 

  131. Sadallah S, Eken C, Schifferli JA (2008) Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol 84:1316–1325

    PubMed  CAS  Google Scholar 

  132. Dalli J, Norling LV, Renshaw D, Cooper D, Leung KY, Perretti M (2008) Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112:2512–2519

    PubMed  CAS  Google Scholar 

  133. Dalli J, Rosignoli G, Hayhoe RP, Edelman A, Perretti M (2010) CFTR inhibition provokes an inflammatory response associated with an imbalance of the annexin A1 pathway. Am J Pathol 177:176–186

    PubMed  CAS  Google Scholar 

  134. Morel O, Morel N, Freyssinet JM, Toti F (2008) Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets 19:9–23

    PubMed  CAS  Google Scholar 

  135. Perez-Casal M, Downey C, Fukudome K, Marx G, Toh CH (2005) Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood 105:1515–1522

    PubMed  CAS  Google Scholar 

  136. Pérez-Casal M, Downey C, Cutillas-Moreno B, Zuzel B, Fukudome K, Hock Toh C (2010) Microparticle-associated endothelial protein C receptor induces cytoprotective and anti-inflammatory effects. Haematologica (in press)

  137. Mosnier LO, Zlokovic BV, Griffin JH (2007) The cytoprotective protein C pathway. Blood 109:3161–3172

    PubMed  CAS  Google Scholar 

  138. Bouchama A, Kunzelmann C, Dehbi M et al (2008) Recombinant activated protein C attenuates endothelial injury and inhibits procoagulant microparticles release in baboon heatstroke. Arterioscler Thromb Vasc Biol 28:1318–1325

    PubMed  CAS  Google Scholar 

  139. Mostefai HA, Meziani F, Mastronardi ML et al (2008) Circulating microparticles from patients with septic shock exert protective role in vascular function. Am J Respir Crit Care Med 178:1148–1155

    PubMed  CAS  Google Scholar 

  140. Nieuwland R, Berckmans RJ, McGregor S et al (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95:930–935

    PubMed  CAS  Google Scholar 

  141. Soriano AO, Jy W, Chirinos JA et al (2005) Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med 33:2540–2546

    PubMed  Google Scholar 

  142. Sennoun N, Baron-Menguy C, Burban M et al (2009) Recombinant human activated protein C improves endotoxemia-induced endothelial dysfunction: a blood-free model in isolated mouse arteries. Am J Physiol Heart Circ Physiol 297:H277–H282

    PubMed  CAS  Google Scholar 

  143. Sadallah S, Eken C, Schifferli JA (2010) Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol 163:26–32

    PubMed  Google Scholar 

  144. Pisetsky DS, Lipsky PE (2010) Microparticles as autoadjuvants in the pathogenesis of SLE. Nat Rev Rheumatol 6:368–372

    PubMed  CAS  Google Scholar 

  145. Abrahams VM, Straszewski-Chavez SL, Guller S, Mor G (2004) First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol Hum Reprod 10:55–63

    PubMed  CAS  Google Scholar 

  146. Abrahams VM, Straszewski SL, Kamsteeg M et al (2003) Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res 63:5573–5581

    PubMed  CAS  Google Scholar 

  147. Castellana D, Zobairi F, Martinez MC et al (2009) Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res 69:785–793

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Freyssinet.

Additional information

This article is published as part of the Special Issue on Small Vesicles as Immune Modulators.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, O., Morel, N., Jesel, L. et al. Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis. Semin Immunopathol 33, 469–486 (2011). https://doi.org/10.1007/s00281-010-0239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0239-3

Keywords

Navigation