Tumor Biology

, Volume 36, Issue 8, pp 5873–5879 | Cite as

Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro

  • Jana Trylcova
  • Petr Busek
  • Karel SmetanaJr.
  • Eva Balaziova
  • Barbora Dvorankova
  • Alzbeta Mifkova
  • Aleksi Sedo
Research Article

Abstract

Cancer-associated fibroblasts (CAFs) significantly influence biological properties of many tumors. The role of these mesenchymal cells is also anticipated in human gliomas. To evaluate the putative role of CAFs in glioblastoma, we tested the effect of CAF conditioned media on the proliferation and chemotaxis of glioma cells. The proliferation of glioma cells was stimulated to similar extent by both the normal fibroblasts (NFs) and CAF-conditioned media. Nevertheless, CAF-conditioned media enhanced the chemotactic migration of glioma cells significantly more potently than the media from normal fibroblasts. In order to determine whether CAF-like cells are present in human glioblastomas, immunofluorescence staining was performed on tissue samples from 20 patients using markers typical for CAFs. This analysis revealed regular presence of mesenchymal cells expressing characteristic CAF markers α-smooth muscle actin and TE-7 in human glioblastomas. These observations indicate the potential role of CAF-like cells in glioblastoma biology.

Keywords

Cancer-associated fibroblasts Glioma Mesenchymal cells Tumor microenvironment 

Notes

Acknowledgments

This work was supported by the following grants: Grant Agency of the Charles University in Prague (GAUK) project 44214, Internal Grant Agency of the Ministry of Health of the Czech Republic (IGA) project 12237-5/2011, University Research Centers (UNCE) project 204013, Charles University Research Development Schemes (PRVOUK) project P27/LF1/1, Czech Science Foundation (GAČR) project P304-12-1333, Specific Academic Research Projects (SVV) project 260032, and by the project “BIOCEV – Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University” (CZ.1.05/1.1.00/02.0109), from the European Regional Development Fund.

Ethical approval

An informed consent was obtained from all individual participants included in the study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Conflicts of interest

None.

References

  1. 1.
    Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends in genetics. TIG. 2009;25(1):30–8. doi: 10.1016/j.tig.2008.10.012.CrossRefPubMedGoogle Scholar
  2. 2.
    Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1(4):482–97.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Goodpaster T, Legesse-Miller A, Hameed MR, Aisner SC, Randolph-Habecker J, Coller HA. An immunohistochemical method for identifying fibroblasts in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem Off J Histochem Soc. 2008;56(4):347–58. doi: 10.1369/jhc.7A7287.2007.CrossRefGoogle Scholar
  4. 4.
    Smetana K, Dvorankova B, Szabo P, Strnad H, Kolar M. Role of stromal fibroblasts in cancer originated from squamous epithelia. In: Bai X, editor. Dermal fibroblasts: histological perspectives, characterization and role in disease. New York: Nova Sciences Publishers; 2013. p. 83–94.Google Scholar
  5. 5.
    De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer J Int du Cancer. 2008;123(10):2229–38. doi: 10.1002/ijc.23925.CrossRefGoogle Scholar
  6. 6.
    Haviv I, Polyak K, Qiu W, Hu M, Campbell I. Origin of carcinoma associated fibroblasts. Cell Cycle. 2009;8(4):589–95.CrossRefPubMedGoogle Scholar
  7. 7.
    Strnad H, Lacina L, Kolar M, Cada Z, Vlcek C, Dvorankova B, et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem Cell Biol. 2010;133(2):201–11. doi: 10.1007/s00418-009-0661-6.CrossRefPubMedGoogle Scholar
  8. 8.
    Kolar M, Szabo P, Dvorankova B, Lacina L, Gabius HJ, Strnad H, et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: immunohistochemical and transcriptomic analyses. Biol Cell / Under Auspices Europ Cell Biol Org. 2012;104(12):738–51. doi: 10.1111/boc.201200018.Google Scholar
  9. 9.
    Dvorankova B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194(6):469–80. doi: 10.1159/000324864.CrossRefPubMedGoogle Scholar
  10. 10.
    Valach J, Fik Z, Strnad H, Chovanec M, Plzak J, Cada Z, et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer J Int du Cancer. 2012;131(11):2499–508. doi: 10.1002/ijc.27550.CrossRefGoogle Scholar
  11. 11.
    Mifkova A, Kodet O, Szabo P, Kucera J, Dvorankova B, Andre S, et al. Synthetic polyamine BPA-C8 inhibits TGF-beta1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. Chembiochem Europ J Chem Biol. 2014;15(10):1465–70. doi: 10.1002/cbic.201402087.CrossRefGoogle Scholar
  12. 12.
    Dvorankova B, Szabo P, Lacina L, Kodet O, Matouskova E, Smetana Jr K. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem Cell Biol. 2012;137(5):679–85. doi: 10.1007/s00418-012-0918-3.CrossRefPubMedGoogle Scholar
  13. 13.
    da Fonseca AC, Badie B. Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clinic Dev Immunol. 2013;2013:264124. doi: 10.1155/2013/264124.Google Scholar
  14. 14.
    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2012;60(3):502–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Clavreul A, Etcheverry A, Chassevent A, Quillien V, Avril T, Jourdan ML, et al. Isolation of a new cell population in the glioblastoma microenvironment. J Neuro-Oncol. 2012;106(3):493–504. doi: 10.1007/s11060-011-0701-7.CrossRefGoogle Scholar
  16. 16.
    Clavreul A, Guette C, Faguer R, Tetaud C, Boissard A, Lemaire L, et al. Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. J Pathol. 2014;233(1):74–88. doi: 10.1002/path.4332.CrossRefPubMedGoogle Scholar
  17. 17.
    Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, et al. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol. 2012;44(5):738–47. doi: 10.1016/j.biocel.2012.01.011.CrossRefPubMedGoogle Scholar
  18. 18.
    Haynes BF, Scearce RM, Lobach DF, Hensley LL. Phenotypic characterization and ontogeny of mesodermal-derived and endocrine epithelial components of the human thymic microenvironment. J Experiment Med. 1984;159(4):1149–68.CrossRefGoogle Scholar
  19. 19.
    Li H, Fan X, Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem. 2007;101(4):805–15. doi: 10.1002/jcb.21159.CrossRefPubMedGoogle Scholar
  20. 20.
    Filatova A, Acker T, Garvalov BK. The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta. 2013;1830(2):2496–508. doi: 10.1016/j.bbagen.2012.10.008.CrossRefPubMedGoogle Scholar
  21. 21.
    Persano L, Rampazzo E, Basso G, Viola G. Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol. 2013;85(5):612–22. doi: 10.1016/j.bcp.2012.10.001.CrossRefPubMedGoogle Scholar
  22. 22.
    Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J. A pericyte origin of spinal cord scar tissue. Science. 2011;333(6039):238–42. doi: 10.1126/science.1203165.CrossRefPubMedGoogle Scholar
  23. 23.
    Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol. 1995;54(3):304–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Najbauer J, Huszthy PC, Barish ME, Garcia E, Metz MZ, Myers SM, et al. Cellular host responses to gliomas. PLoS One. 2012;7(4):e35150. doi: 10.1371/journal.pone.0035150.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Behnan J, Isakson P, Joel M, Cilio C, Langmoen IA, Vik-Mo EO, et al. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells. 2014;32(5):1110–23. doi: 10.1002/stem.1614.CrossRefPubMedGoogle Scholar
  26. 26.
    Birnbaum T, Hildebrandt J, Nuebling G, Sostak P, Straube A. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J Neuro-Oncol. 2011;105(1):57–65. doi: 10.1007/s11060-011-0561-1.CrossRefGoogle Scholar
  27. 27.
    Cornil I, Theodorescu D, Man S, Herlyn M, Jambrosic J, Kerbel RS. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc Natl Acad Sci U S A. 1991;88(14):6028–32.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Prowse AB, McQuade LR, Bryant KJ, Marcal H, Gray PP. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res. 2007;6(9):3796–807. doi: 10.1021/pr0702262.CrossRefPubMedGoogle Scholar
  29. 29.
    Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol. 2014;49(3):1212–44. doi: 10.1007/s12035-013-8593-5.CrossRefPubMedGoogle Scholar
  30. 30.
    Camby I, Belot N, Lefranc F, Sadeghi N, de Launoit Y, Kaltner H, et al. Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J Neuropathol Exp Neurol. 2002;61(7):585–96.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jana Trylcova
    • 1
  • Petr Busek
    • 1
  • Karel SmetanaJr.
    • 2
  • Eva Balaziova
    • 1
  • Barbora Dvorankova
    • 2
  • Alzbeta Mifkova
    • 2
  • Aleksi Sedo
    • 1
  1. 1.Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Anatomy, First Faculty of MedicineCharles University in PraguePrague 2Czech Republic

Personalised recommendations