Skip to main content

Advertisement

Log in

Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Tumor angiogenesis is of central importance in the malignancy of glioblastoma multiforme (GBM). As previously shown, human mesenchymal stem cells (hMSC) migrate towards GBM and are incorporated into tumor microvessels. However, phenotype and function of recruited hMSC remain unclear. We evaluated the differentiation and angiogenic potential of hMSC after stimulation with glioblastoma-conditioned medium in vitro. Immunostaining with endothelial, smooth muscle cell and pericyte markers was used to analyze hMSC differentiation in different concentrations of tumor-conditioned medium (CM), and the angiogenic potential was evaluated by matrigel-based tube-formation assay (TFA). Immunofluorescence staining revealed that tumor-conditioned hMSC (CM-hMSC) expressed CD 151, VE-cadherin, desmin, α-smooth muscle actin, nestin, and nerval/glial antigen 2 (NG2) in a CM concentration-dependent manner, whereas no expression of von-Willebrand factor (vWF) and smooth myosin could be detected. These findings are indicative of GBM-dependent differentiation of hMSC into pericyte-like cells, rather than endothelial or smooth muscle cells. Furthermore, TFA of hMSC and CM-hMSC revealed CM-dependent formation of capillary-like networks, which differed substantially from those formed by human endothelial cells (HUVEC), also implying pericyte-like tube formation. These results are indicative of GBM-derived differentiation of hMSC into pericyte-like mural cells, which might contribute to the neovascularization and stabilization of tumor vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Assimakopoulou M, Sotiropoulou-Bonikou G, Maraziotis T, Papadakis N, Varakis I (1997) Microvessel density in brain tumors. Anticancer Res 17:4747–4753

    PubMed  CAS  Google Scholar 

  2. Anderson JC, McFarland BC, Gladson CL (2008) New molecular targets in angiogenic vessels of glioblastoma tumours. Expert Rev Mol Med 10:e23

    Article  PubMed  Google Scholar 

  3. Ahluwalia MS, Gladson CL (2010) Progress on antiangiogenic therapy for patients with malignant glioma. J Oncol 2010:689018

    PubMed  Google Scholar 

  4. Birnbaum T, Roider J, Schankin CJ et al (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83:241–247

    Article  PubMed  CAS  Google Scholar 

  5. Schichor C, Birnbaum T, Etminan N et al (2006) Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199:301–310

    Article  PubMed  CAS  Google Scholar 

  6. Nakamizo A, Marini F, Amano T et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    PubMed  CAS  Google Scholar 

  7. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    Article  PubMed  CAS  Google Scholar 

  8. Strieter RM, Kunkel SL, Elner VM et al (1992) Interleukin-8, a corneal factor that induces neovascularisation. Am J Pathol 141:1279–1284

    PubMed  CAS  Google Scholar 

  9. Cristofaro B, Caporali A, Meloni M et al (2008) Neutrophin-3 (nt-3) promotes reparative neovascularization and blood flow recovery in a mouse model of limb ischemia. Atherosclerosis 199:464

    Article  CAS  Google Scholar 

  10. Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W (2008) Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44:1072–1084

    Article  PubMed  CAS  Google Scholar 

  11. Dufourcq P, Descamps B, Tojais NF et al (2008) Secreted frizzled-related protein-1 enhances mesenchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells 26:2991–3001

    Article  PubMed  Google Scholar 

  12. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie C (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  13. Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J (2003) Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 10:621–629

    Article  PubMed  CAS  Google Scholar 

  14. Padovan CS, Jahn K, Birnbaum T et al (2003) Expression of neuronal markers in differentiated marrow stromal cells and cd133+ stem-like cells. Cell Transplant 12:839–848

    PubMed  Google Scholar 

  15. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  PubMed  CAS  Google Scholar 

  16. Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  PubMed  Google Scholar 

  17. Paunescu V, Bojin FM, Tatu CA, et al. (2010) Tumor-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med [Epub ahead of print]

  18. Wautier F, Wislet-Gendebien S, Chanas G et al (2007) Regulation of nestin expression by thrombin and cell density in cultures of bone mesenchymal stem cells and radial glial cells. BMC Neurosci 8:104

    Article  PubMed  Google Scholar 

  19. Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G (2001) Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30:35–44

    Article  PubMed  CAS  Google Scholar 

  20. Bach TL, Barsigian C, Chalupowicz DG et al (1998) Ve-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 238:324–334

    Article  PubMed  CAS  Google Scholar 

  21. Breviario F, Caveda L, Corada M et al (1995) Functional properties of human vascular endothelial cadherin (7b4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15:1229–1239

    Article  PubMed  CAS  Google Scholar 

  22. Brachvogel B, Pausch F, Farlie P et al (2007) Isolated anxa5+/sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Exp Cell Res 313:2730–2743

    Article  PubMed  CAS  Google Scholar 

  23. Nico B, Ennas MG, Crivellato E et al (2004) Desmin-positive pericytes in the chick embryo chorioallantoic membrane in response to fibroblast growth factor-2. Microvasc Res 68:13–19

    Article  PubMed  CAS  Google Scholar 

  24. Wagner DD, Marder VJ (1984) Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol 99:2123–2130

    Article  PubMed  CAS  Google Scholar 

  25. Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 53:637–644

    Article  PubMed  CAS  Google Scholar 

  26. Sincock PM, Mayrhofer G, Ashman LK (1997) Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and alpha5beta1 integrin. J Histochem Cytochem 45:515–525

    Article  PubMed  CAS  Google Scholar 

  27. Sterk LMT, Geuijen CAW, van den Berg JG, Claessen N, Weening JJ, Sonnenberg A (2002) Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J Cell Sci 115:1161–1173

    PubMed  CAS  Google Scholar 

  28. Smith ME, Jones TA, Hilton D (1998) Vascular endothelial cadherin is expressed by perineurial cells of peripheral nerve. Histopathology 32:411–413

    Article  PubMed  CAS  Google Scholar 

  29. Bexell D, Gunnarsson S, Tormin A et al (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 17:183–190

    Article  PubMed  CAS  Google Scholar 

  30. Gavard J (2009) Breaking the VE-cadherin bonds. FEBS Lett 583:1–6

    Article  PubMed  CAS  Google Scholar 

  31. Rudini N, Felici A, Giampietro C et al (2008) VE-cadherin is a critical endothelial regulator of TGF-beta signalling. EMBO J 27:993–1004

    Article  PubMed  CAS  Google Scholar 

  32. Guidolin D, Nico B, Mazzocchi G, Vacca A, Nussdorfer GG, Ribatti D (2004) Order and disorder in the vascular network. Leukemia 18:1745–1750

    Article  PubMed  CAS  Google Scholar 

  33. Taraboletti G, Giavazzi R (2004) Modelling approaches for angiogenesis. Eur J Cancer 40:881–889

    Article  PubMed  CAS  Google Scholar 

  34. Betsholtz C, Lindblom P, Gerhardt H (2005) Role of pericytes in vascular morphogenesis. EXS 94:115–125

    PubMed  Google Scholar 

  35. Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–249

    Article  PubMed  CAS  Google Scholar 

  36. Annabi B, Lee YT, Turcotte S et al (2003) Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells 21:337–347

    Article  PubMed  CAS  Google Scholar 

  37. Keerl S, Gehmert S, Gehmert S, Song YH, Alt E (2010) PDGF and bFGF modulate tube formation in adipose tissue-derived stem cells. Ann Plast Surg 64:487–490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Parts of this work are elements of the dissertation of one co-author (Jenna Hildebrandt) presented to the Medical Faculty, LMU Munich, Germany. This work was supported by a grant of the University of Munich (Foerderprogramm fuer Forschung und Lehre, Reg.-Nr. 439), Germany.

Conflict of interest

No conflict of interest is to be declared for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Birnbaum.

Additional information

Tobias Birnbaum and Jenna Hildebrandt contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnbaum, T., Hildebrandt, J., Nuebling, G. et al. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J Neurooncol 105, 57–65 (2011). https://doi.org/10.1007/s11060-011-0561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0561-1

Keywords

Navigation