Skip to main content

Advertisement

Log in

Association between six genetic variants of IL-17A and IL-17F and cervical cancer risk: a case–control study

  • Research Article
  • Published:
Tumor Biology

Abstract

We conducted a case–control study to estimate association between six common single nucleotide polymorphisms (SNPs) and risk of cervical cancer and evaluate the interaction between IL-17 gene polymorphisms and environmental factors in cervical cancer patients. This study included 264 consecutive primary cervical cancer patients and 264 age-matched controls. The genotypes of IL-17A rs2275913, rs3748067, and rs3819025 and IL-17A rs763780, rs9382084, and rs1266828 were analyzed using polymerase chain reaction-restriction fragment length of polymorphism (PCR-RFLP) assay. By logistic regression analysis, we found that individuals with AA genotype of rs2275913 were correlated with increased risk of cervical cancer when compared with GG genotype, and the odds ratio (OR) (95 % confidence interval (CI)) for AA genotype was 2.34 (1.24–4.49). By stratified analysis, individuals with AA genotype of rs2275913 were significantly associated with increased risk of cervical cancer in HPV-16- or HPV-18-infected patients when compared with GG genotype, and the OR (95 % CI) was 4.11 (1.14–22.33). In this case–control study, we suggest that rs2275913 may play an important role in the development of cervical cancer, especially in HPV-16- or HPV-18-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.

  2. Wen C. China’s plans to curb cervical cancer. Lancet Oncol. 2005;6:139–41.

    Article  PubMed  Google Scholar 

  3. Schlecht NF, Kulaga S, Robitaille J, et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA. 2001;286:3106–14.

    Article  CAS  PubMed  Google Scholar 

  4. Woodman CB, Collins S, Winter H, et al. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet. 2001;357:1831–6.

    Article  CAS  PubMed  Google Scholar 

  5. Quan Y, Zhou B, Wang Y, et al. Association between IL17 polymorphisms and risk of cervical cancer in Chinese women. Clin Dev Immunol. 2012;2012:258293.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shi TY, Zhu ML, He J, et al. Polymorphisms of the Interleukin 6 gene contribute to cervical cancer susceptibility in Eastern Chinese women. Hum Genet. 2013;132(3):301–12.

    Article  CAS  PubMed  Google Scholar 

  7. de Waal MR, Haanen J, Spits H, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1991;174(4):915–24.

    Article  Google Scholar 

  8. Fernandes AP, Gonçalves MA, Duarte G, Cunha FQ, Simões RT, Donadi EA. HPV16, HPV18, and HIV infection may influence cervical cytokine intralesional levels. Virology. 2005;334(2):294–8.

    Article  CAS  PubMed  Google Scholar 

  9. Shi WJ, Liu H, Wu D, Tang ZH, Shen YC, Guo L. Stratification analysis and case–control study of relationships between interleukin-6 gene polymorphisms and cervical cancer risk in a Chinese population. Asian Pac J Cancer Prev. 2014;15(17):7357–62.

    Article  PubMed  Google Scholar 

  10. Chen X, Han S, Wang S, et al. Interactions of IL-12A and IL-12B polymorphisms on the risk of cervical cancer in Chinese women. Clin Cancer Res. 2009;15(1):400–5.

    Article  CAS  PubMed  Google Scholar 

  11. Yang YC, Chang TY, Chen TC, Chang SC, Lin WS, Lee YJ. Genetic variants in interleukin-18 gene and risk for cervical squamous cell carcinoma. Hum Immunol. 2013;74(7):882–7.

    Article  CAS  PubMed  Google Scholar 

  12. Chagas BS, Gurgel AP, da Cruz HL, et al. An interleukin-10 gene polymorphism associated with the development of cervical lesions in women infected with human papillomavirus and using oral contraceptives. Infect Genet Evol. 2013;19:32–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  14. Kawaguchi M, Adachi M, Oda N, Kokubu F, Huang SK. IL-17 cytokine family. J Allergy Clin Immunol. 2004;114(6):1265–73. quiz 1274.

    Article  CAS  PubMed  Google Scholar 

  15. Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol. 2013;2013:436307.

    PubMed  PubMed Central  Google Scholar 

  16. Cua DJ, Tato CM. Innate il-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Qi Y, Hu J, Tang L, Zhao S, Shan B. Expression of Th17 cells in breast cancer tissue and its association with clinical parameters. Cell Biochem Biophys. 2012;62:153–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lan C, Huang X, Lin S, et al. High density of IL-17-producing cells is associated with improved prognosis for advanced epithelial ovarian cancer. Cell Tissue Res. 2013;352:351–9.

    Article  CAS  PubMed  Google Scholar 

  19. Meng XY, Zhou CH, Ma J, Jiang C, Ji P. Expression of interleukin-17 and its clinical significance in gastric cancer patients. Med Oncol. 2012;29:3024–8.

    Article  CAS  PubMed  Google Scholar 

  20. Chechlinska M, Kowalewska M, Nowak R. Systemic inflammation as a confounding factor in cancer biomarker discovery and validation. Nat Rev Cancer. 2010;10:2–3.

    Article  CAS  PubMed  Google Scholar 

  21. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34:149–62.

    Article  CAS  PubMed  Google Scholar 

  22. Matsuzaki G, Umemura M. Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol Immunol. 2007;51:1139–47.

    Article  CAS  PubMed  Google Scholar 

  23. Kao CY, Chen Y, Thai P, et al. Il-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol. 2004;173:3482–91.

    Article  CAS  PubMed  Google Scholar 

  24. Kaabachi W, ben Amor A, Kaabachi S, Rafrafi A, Tizaoui K, Hamzaoui K. Interleukin-17A and -17F genes polymorphisms in lung cancer. Cytokine. 2014;66(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Zheng L, Sun Y, Zhang X. Analysis of the association of interleukin-17 gene polymorphisms with gastric cancer risk and interaction with Helicobacter pylori infection in a Chinese population. Tumour Biol. 2014;35(2):1575–80.

    Article  CAS  PubMed  Google Scholar 

  26. Omrane I, Marrakchi R, Baroudi O, et al. Significant association between interleukin-17A polymorphism and colorectal cancer. Tumour Biol. 2014;35(7):6627–32.

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Zhu Q, Li Z, et al. IL17A gene polymorphisms, serum IL-17A and IgE levels, and hepatocellular carcinoma risk in patients with chronic hepatitis B virus infection. Mol Carcinog. 2014;53(6):447–57.

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Jiang Y, Zhang Y, et al. Association analysis of IL-17A and IL-17F polymorphisms in Chinese Han women with breast cancer. PLoS One. 2012;7(3):e34400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Z, Ding J, Pang N, et al. The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients. Diagn Pathol. 2013;8:61.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Souza JM, Matias BF, Rodrigues CM, Murta EF, Michelin MA. IL-17 and IL-22 serum cytokine levels in patients with squamous intraepithelial lesion and invasive cervical carcinoma. Eur J Gynaecol Oncol. 2013;34(5):466–8.

    CAS  PubMed  Google Scholar 

  31. Wu TC, Kurman RJ. Analysis of cytokine profiles in patients with human papillomavirus-associated neoplasms. J Natl Cancer Inst. 1997;89:185–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kadish AS, Timmins P, Wang Y, et al. Regression of cervical intraepithelial neoplasia and loss of human papillomavirus (HPV) infection is associated with cell-mediated immune responses to an HPV type 16 E7 peptide. Cancer Epidemiol Biomarkers Prev. 2002;11:483–8.

    CAS  PubMed  Google Scholar 

  33. Scott M, Stites DP, Moscicki AB. Th1 cytokine patterns in cervical human papillomavirus infection. Clin Diagn Lab Immunol. 1999;6:751–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Q., Zhu, D., Zhang, J. et al. Association between six genetic variants of IL-17A and IL-17F and cervical cancer risk: a case–control study. Tumor Biol. 36, 3979–3984 (2015). https://doi.org/10.1007/s13277-015-3041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3041-y

Keywords

Navigation