Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: A comprehensive analysis of candidate genes and pathways in pancreatic cancer

  • Research Article
  • Published:
Tumor Biology

This article was retracted on 17 August 2015

Abstract

The study aimed to dissect the molecular mechanism of pancreatic cancer by a range of bioinformatics approaches. Three microarray datasets (GSE32676, GSE21654, and GSE14245) were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) with logarithm of fold change (|logFC|) >0.585 and p value <0.05 were identified between pancreatic cancer samples and normal controls. Transcription factors (TFs) were selected from the DEGs based on TRASFAC database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the DEGs using The Database for Annotation, Visualization and Integrated Discovery (p value <0.05), followed by construction of protein-protein interaction (PPI) network using Search Tool for the Retrieval of Interacting Genes software. Latent pathway identification analysis was applied to analyze the DEGs-related pathways crosstalk and the pathways with high weight value were included in the pathway crosstalk network using Cytoscape. Sixty-five DEGs were screened out. CCAAT/enhancer-binding protein delta (CEBPD), FBJ osteosarcoma oncogene B (FOSB), Stratifin (SFN), Krüppel-like factor 5 (KLF5), Pentraxin 3 (PTX3), and nuclear receptor subfamily 4, group A, member 3 (NR4A3) were important TFs. Interleukin-6 (IL-6) was the hub node of the PPI network. DEGs were significantly enriched in NOD-like receptor signaling pathway which was primarily interacted with inflammation and immune related pathways (cytosolic DNA-sensing, hematopoietic cell lineage, intestinal immune network for IgA production and chemokine pathways). The study suggested CEBPD, FOSB, SFN, KLF5, PTX3, NR4A3, IL-6, and NOD-like receptor pathways were involved in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TF:

transcription factor

IL-6:

interleukin-6

IL-1B:

interleukin-1β

KRAS:

V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

TNF-α:

tumor necrosis factor-alpha

EGF:

epidermal growth factor

RMA:

robust multiarray average

LogFC:

logarithm of fold change

DAVID:

The Database for Annotation, Visualization, and Integrated Discovery

GO:

gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

BP:

biological process

CC:

cellular component

MF:

molecular function

STRING:

The Search Tool for the Retrieval of Interacting Genes

PPI:

protein-protein interaction

LPIA:

latent pathway identification analysis

DEGs:

differentially expressed genes

IFN-γ:

interferon-γ

SFN:

stratifin

FOSB:

FBJ osteosarcoma oncogene B

PTX3:

pentraxin-related protein 3

NR4A3:

nuclear receptor subfamily 4 group A, member 3

C/EBP delta:

CCAAT/enhancer-binding protein delta

KLFs:

Krüppel-like factors

NLRs:

NOD-like receptors

MAPK:

mitogen-activated protein kinase

References

  1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.

    Article  PubMed  Google Scholar 

  2. Seufferlein T, Bachet J, Van Cutsem E, Rougier P. Pancreatic adenocarcinoma: ESMO–ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 suppl 7:vii33–40.

    Article  PubMed  Google Scholar 

  3. Loos M, Kleeff J, Friess H, Büchler MW. Surgical treatment of pancreatic cancer. Ann N Y Acad Sci. 2008;1138(1):169–80.

    Article  PubMed  Google Scholar 

  4. Biankin AV, Waddell N, Kassahn KS, Gingras M-C, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maupin KA, Sinha A, Eugster E, Miller J, Ross J, Paulino V, et al. Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems. PLoS One. 2010;5(9):e13002.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D, Park NH, et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology. 2010;138(3):949–57. e7.

    Article  CAS  PubMed  Google Scholar 

  7. Huang M, Tang S-N, Upadhyay G, Marsh JL, Jackman CP, Shankar S, et al. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and sonic hedgehog pathways. PLoS One. 2014;9(4):e92161.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Donahue TR, Tran LM, Hill R, Li Y, Kovochich A, Calvopina JH, et al. Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res. 2012;18(5):1352–63.

    Article  CAS  PubMed  Google Scholar 

  9. Pang H, Lin A, Holford M, Enerson BE, Lu B, Lawton MP, et al. Pathway analysis using random forests classification and regression. Bioinformatics. 2006;22(16):2028–36.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Agarwal P, Rajagopalan D. A global pathway crosstalk network. Bioinformatics. 2008;24(12):1442–7.

    Article  CAS  PubMed  Google Scholar 

  11. Basu A, Castle VP, Bouziane M, Bhalla K, Haldar S. Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: synergistic action of estrogen metabolite and ligands of death receptor family. Cancer Res. 2006;66(8):4309–18.

    Article  CAS  PubMed  Google Scholar 

  12. Young SH, Rozengurt E. Crosstalk between insulin receptor and G protein-coupled receptor signaling systems leads to Ca (2) + oscillations in pancreatic cancer PANC-1 cells. Biochem Biophys Res Commun. 2010;401(1):154–8. doi:10.1016/j.bbrc.2010.09.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, et al. Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J Clin Invest. 2011;121(121):4685–99. 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  15. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

    Article  PubMed  Google Scholar 

  16. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leek JT. Surrogate variable analysis: University of Washington; 2007

  18. Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform. 2008;9(4):326–32.

    Article  CAS  PubMed  Google Scholar 

  19. Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):3.

    Article  Google Scholar 

  20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arakawa K, Kono N, Yamada Y, Mori H, Tomita M. KEGG-based pathway visualization tool for complex omics data. In silico biol. 2005;5(4):419–23.

    CAS  PubMed  Google Scholar 

  22. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(D1):D808–D15.

    Article  CAS  PubMed  Google Scholar 

  23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pham L, Christadore L, Schaus S, Kolaczyk ED. Network-based prediction for sources of transcriptional dysregulation using latent pathway identification analysis. Proc Natl Acad Sci. 2011;108(32):13347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Becker AE, Hernandez YG, Frucht H, Lucas AL. Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World J Gastroenterol : WJG. 2014;20(32):11182–98. doi:10.3748/wjg.v20.i32.11182.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moore F, Santin I, Nogueira TC, Gurzov EN, Marselli L, Marchetti P, et al. The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS One. 2012;7(2):e31062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JH, Lee JY, Lee KT, Lee JK, Lee KH, Jang K-T, et al. RGS16 and FosB underexpressed in pancreatic cancer with lymph node metastasis promote tumor progression. Tumor Biol. 2010;31(5):541–8.

    Article  CAS  Google Scholar 

  28. Guweidhi A, Kleeff J, Giese N, El Fitori J, Ketterer K, Giese T, et al. Enhanced expression of 14-3-3sigma in pancreatic cancer and its role in cell cycle regulation and apoptosis. Carcinogenesis. 2004;25(9):1575–85.

    Article  CAS  PubMed  Google Scholar 

  29. Mori A, Moser C, Lang SA, Hackl C, Gottfried E, Kreutz M, et al. Up-regulation of Kruppel-like factor 5 in pancreatic cancer is promoted by interleukin-1beta signaling and hypoxia-inducible factor-1alpha. Mol Cancer Res : MCR. 2009;7(8):1390–8. doi:10.1158/1541-7786.mcr-08-0525.

    Article  CAS  PubMed  Google Scholar 

  30. Locatelli M, Ferrero S, Martinelli Boneschi F, Boiocchi L, Zavanone M, Maria Gaini S, et al. The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J Neuroimmunol. 2013;260(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  31. Lee S-O, Abdelrahim M, Yoon K, Chintharlapalli S, Papineni S, Kim K, et al. Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits pancreatic cancer cell and tumor growth. Cancer Res. 2010;70(17):6824–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302.

    Article  CAS  PubMed  Google Scholar 

  33. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1):349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dima SO, Tanase C, Albulescu R, Herlea V, Chivu-Economescu M, Purnichescu-Purtan R, et al. An exploratory study of inflammatory cytokines as prognostic biomarkers in patients with ductal pancreatic adenocarcinoma. Pancreas. 2012;41(7):1001–7.

    Article  CAS  PubMed  Google Scholar 

  35. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  36. Rincon M. Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012;33(11):571–7.

    Article  CAS  PubMed  Google Scholar 

  37. Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Klöppel G, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19(4):456–69.

    Article  CAS  PubMed  Google Scholar 

  38. Guan J, Zhang H, Wen Z, Gu Y, Cheng Y, Sun Y et al. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer letters. 2013.

  39. Hong DS, Angelo LS, Kurzrock R. Interleukin‐6 and its receptor in cancer. Cancer. 2007;110(9):1911–28.

    Article  CAS  PubMed  Google Scholar 

  40. Song J, Singh M. How and when should interactome-derived clusters be used to predict functional modules and protein function? Bioinformatics. 2009;25(23):3143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fukata M, Vamadevan AS, Abreu MT, editors. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Seminars in immunology; 2009: Elsevier.

  42. Huzarski T, Lener M, Domagała W, Gronwald J, Byrski T, Kurzawski G, et al. The 3020insC allele of NOD2 predisposes to early-onset breast cancer. Breast Cancer Res Treat. 2005;89(1):91–3.

    Article  PubMed  Google Scholar 

  43. Papaconstantinou I, Theodoropoulos G, Gazouli M, Panoussopoulos D, Mantzaris GJ, Felekouras E, et al. Association between mutations in the CARD15/NOD2 gene and colorectal cancer in a Greek population. Int J Cancer. 2005;114(3):433–5.

    Article  CAS  PubMed  Google Scholar 

  44. Tsuji M, Suzuki K, Kinoshita K, Fagarasan S, editors. Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Seminars in immunology; 2008: Elsevier.

  45. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nunez G, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J. 2008;27(2):373–83. doi:10.1038/sj.emboj.7601962.

    Article  CAS  PubMed  Google Scholar 

  46. Park J-H, Kim Y-G, McDonald C, Kanneganti T-D, Hasegawa M, Body-Malapel M, et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol. 2007;178(4):2380–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Overseas Scholars Funds (grant no. 1054HQ081) and National Natural Science Foundation of China (grant no. 30340058).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biou Liu.

Additional information

Highlights

1. We found 65 DEGs from gene expression profiles of 78 pancreatic cancer specimens.

2. This study identified 6 significant TFs (CEBPD, FOSB, SFN, KLF5, PTX3, and NR4A3).

3. NOD-like receptor pathway was suggested to play a key role in pancreatic cancer.

4. Pathway crosstalk between NOD-like receptor pathway and multiple inflammation and immune related pathways was predicted.

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

An erratum to this article is available at http://dx.doi.org/10.1007/s13277-015-3788-1.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, J., Li, H. et al. RETRACTED ARTICLE: A comprehensive analysis of candidate genes and pathways in pancreatic cancer. Tumor Biol. 36, 1849–1857 (2015). https://doi.org/10.1007/s13277-014-2787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2787-y

Keywords

Navigation