Skip to main content
Log in

Autonomous trajectory tracking of a quadrotor UAV using ANFIS controller based on Gaussian pigeon-inspired optimization

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper develops a method to tune neuro-fuzzy controllers using metaheuristic optimization. The main purpose of this approach is that it allows neuro-fuzzy controllers to be tuned to achieve global performance requirements. This paper proposes a robust and intelligent control method based on adaptive neuro-fuzzy inference system (ANFIS) and pigeon-inspired optimization (PIO) algorithm to govern the behavior of a three-degree-of-freedom (3-DOF) quadrotor unmanned aerial vehicle (UAV). UAVs are flying platforms that have become increasingly used in a wide range of applications. However, the most recent research has aimed to improve the quality of UAVs control in order to achieve its mission accurately. The quadrotor is chosen due to its simple mechanical structure; nevertheless, these types of UAVs are highly nonlinear. Intelligent control that uses artificial intelligence approach such as fuzzy logic is a suitable choice to better control nonlinear systems. The ANFIS controller is proposed to control the movement of UAV to track a given reference trajectory in 2-D vertical plane. The PIO is used to obtain the ANFIS optimal parameters with the aim of improving the quality of the controller and, therefore, to minimize tracking error. To evaluate the performance of the ANFIS-PIO, a comparison between the proposed controller, ANFIS and proportional–integral–derivative (PID) controllers is illustrated. The results demonstrate that the proposed controller is more effective compared to the other controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Mostafa, S.A., Ahmad, M.S., Mustapha, A.: Adjustable autonomy: a systematic literature review. Artif. Intell. Rev. 51(2), 149–186 (2019). https://doi.org/10.1007/s10462-017-9560-8

    Article  Google Scholar 

  2. Mahadevan, P.: The military utility of drones. CSS Anal. Secur. Policy 78, 1–3 (2010). https://doi.org/10.3929/ethz-a-006253833

    Article  Google Scholar 

  3. Haidari, L.A., Brown, S.T., Ferguson, M., Bancroft, E., Spiker, M., Wilcox, A., Ambikapathi, R., Sampath, V., Connor, D.L., Lee, B.Y.: The economic and operational value of using drones to transport vaccines. Vaccine 34(34), 4062–4067 (2016). https://doi.org/10.1016/j.vaccine.2016.06.022

    Article  Google Scholar 

  4. Barmpounakis, E.N., Vlahogianni, E.I., Golias, J.C.: Unmanned aerial systems for transportation engineering: current practice and future challenges. Int. J. Transp. Sci. Technol. 5(3), 111–122 (2016)

    Article  Google Scholar 

  5. Reinartz, P., Lachaise, M., Schmeer, E., Krauss, T., Runge, H.: Traffic monitoring with serial images from airborne cameras. ISPRS J. Photogramm. Remote Sens. 61, 149–158 (2006). https://doi.org/10.1016/j.isprsjprs.2006.09.009

    Article  Google Scholar 

  6. European Aviation Safety Agency.: ‘‘Prototype” Commission Regulation on Unmanned Aircraft Operations. (2016). https://www.easa.europa.eu/sites/default/files/dfu/UAS%2520Prototype%2520Regulation%2520final.pdf

  7. Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014). https://doi.org/10.1016/j.autcon.2014.01.004

    Article  Google Scholar 

  8. Valente, J., Del Cerro, J., Barrientos, A., Sanz, D.: Aerial coverage optimization in precision agriculture management: a musical harmony inspired approach. Comput. Electron. Agric. 99, 153–159 (2013)

    Article  Google Scholar 

  9. Freeman, P.K., Freeland, R.S.: Politics & technology: U.S. polices restricting unmanned aerial systems in agriculture. Food Policy 49, 302–311 (2014). https://doi.org/10.1016/j.foodpol.2014.09.008

    Article  Google Scholar 

  10. Kanistras, K., Martins, G., Rutherford, M.J., Valavanis, K.P.: Survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: Handbook of unmanned aerial vehicles, pp. 2643–2666. Springer, Dordrecht (2015). https://doi.org/10.1007/978-90-481-9707-1_122

  11. Chow, J.Y.J.: Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy. Int. J. Transp. Sci. Technol. 5(3), 167–185 (2016)

    Article  Google Scholar 

  12. Finn, R.L., Wright, D.: Unmanned aircraft systems: surveillance, ethics and privacy in civil applications. Comput. Law Secur. Rev. 28(2), 184–194 (2012). https://doi.org/10.1016/j.clsr.2012.01.005

    Article  Google Scholar 

  13. Lei, M., Manchun, L., Yafei, W., Lihua, T., Liang, C.: Using high-resolution imagery acquired with an autonomous unmanned aerial vehicle for urban construction and planning. In: 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013), pp. 200–203 (2013). https://doi.org/10.2991/rsete.2013.49

  14. Knyaz, V.A., Chibunichev, A.G.: Photogrammetric techniques for road surface analysis. In: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic, pp. 515–520 (2016). https://doi.org/10.5194/isprsarchives-XLI-B5-515-2016.

  15. Hoffer, N.V., Coopmans, C., Jensen, A.M., Chen, Y.: A survey and categorization of small low-cost unmanned aerial vehicle system identification. J. Intell. Robot. Syst. 74(1–2), 129–145 (2014)

    Article  Google Scholar 

  16. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for UAVs: current developments and trends. J. Intell. Robot. Syst. 87(1), 141–168 (2017)

    Article  Google Scholar 

  17. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutor. 18(4), 2624–2661 (2016)

    Article  Google Scholar 

  18. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  19. Karr, C.L.: Design of an adaptive fuzzy linguistic controller using a genetic algorithm. In: Proc. of the Fourth Int. Conf. Genetic Algorithms, pp. 450–457 (1991)

  20. Karr, C.L., Gentry, E.J.: Fuzzy control of pH using genetic algorithms. IEEE Trans. Fuzzy Syst. 1(1), 46–53 (1993)

    Article  Google Scholar 

  21. Herrera, F., Lozano, M., Verdegay, J.L.: Turning fuzzy logic controllers by genetic algorithms. Int. J. Approx. Reason. 12(3–4), 299–315 (1995)

    Article  Google Scholar 

  22. Shimojima, K., Fukuda, T., Hasegawa, Y.: Self-turning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm. Fuzzy Sets Syst. 71(3), 295–309 (1995)

    Article  Google Scholar 

  23. Liska, J., Melsheimer, S.S.: Complete design of fuzzy logic systems using genetic algorithms. In: Proceedings of 3rd IEEE International Conference on Fuzzy Systems, pp. 1377–1382 (1994)

  24. Thrift, P.: Fuzzy logic synthesis with genetic algorithms. In: Proceedings 4th International Conference on Genetic Algorithms (ICGA’91), pp. 509–513 (1991)

  25. Michael, A., Takagi, H.: Dynamic control of genetic algorithms using fuzzy logic techniques. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 76–83. Morgan Kaufmann (1993)

  26. Homaifar, A., McCormick, E.: Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(2), 129–139 (1995)

    Article  Google Scholar 

  27. Chen, C.C., Wong, C.C.: Self-generating rule-mapping fuzzy controller design using a genetic algorithm. IEEE Proc. Control Theory Appl. 49, 143–148 (2002)

    Article  Google Scholar 

  28. Belarbi, K., Titel, F., Bourebia, W., Benmahammed, K.: Design of mamdani fuzzy logic controllers with rule base minimisation using genetic algorithm. Eng. Appl. Artif. Intell. 18(7), 875–880 (2005)

    Article  Google Scholar 

  29. Refoufi, S., Benmahammed, K.: Control of a manipulator robot by neuro-fuzzy subsets form approach control optimized by the genetic algorithms. ISA Trans. 77, 133–145 (2018)

    Article  Google Scholar 

  30. Talbi, N., Belarbi, K.: Optimization of fuzzy controller using hybrid Tabu search and particle swarm optimization. In: Proc. IEEE, 11th International Conference on Hybrid Intelligent Systems (HIS), Malaysia, pp. 561–565 (2011).

  31. Talbi, N., Belarbi, K.: Designing fuzzy controllers for a class of MIMO systems using hybrid particle swarm optimization and Tabu search. Int. J. Hybrid Intell. Syst. 10(1), 1–9 (2013)

    Article  Google Scholar 

  32. Juang, C.F., Chang, P.H.: Designing fuzzy-rule-based systems using continuous Ant colony optimization. IEEE Trans. Fuzzy Syst. 18(1), 138–149 (2010)

    Article  Google Scholar 

  33. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015)

    Article  Google Scholar 

  34. Premkumar, K., Manikandan, B.V.: Speed control of brushless DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system. Appl. Soft Comput. 32, 403–419 (2015)

    Article  Google Scholar 

  35. Caraveo, C., Valdez, F., Castillo, O.: Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. 43, 131–142 (2016)

    Article  Google Scholar 

  36. Lagunes, M.L., Castillo, O., Soria, J.: Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the firefly algorithm. Fuzzy Log. Augment. Neural Optim. Algorithms 749, 199–206 (2018)

    Google Scholar 

  37. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceeding of IEEE International Conference on Neural Networks, Perth, pp. 1942–1948 (1995)

  38. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  39. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

  40. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, London (2008)

    Google Scholar 

  41. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)

  42. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  43. Duan, H., Qiao, P.: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 7, 24–37 (2014)

    Article  MathSciNet  Google Scholar 

  44. Chen, S.J., Duan, H.B.: Fast image matching via multi-scale Gaussian mutation pigeon-inspired optimization for low cost quadrotor. Aircr. Eng. Aerosp. Technol. 89, 777–790 (2017)

    Article  Google Scholar 

  45. Lin, N., Huang, S.M., Gong, C.Q.: UAV path planning based on adaptive weighted pigeon-inspired optimization algorithm. Comput. Simul. 35, 38–42 (2018)

    Google Scholar 

  46. Xian, N., Chen, Z.: A quantum-behaved pigeon-inspired optimization approach to explicit nonlinear model predictive controller for quadrotor. Int. J. Intell. Comput. Cybern. 11, 47–63 (2018)

    Article  Google Scholar 

  47. Pei, J.Z., Su, Y.X., Zhang, D.H.: Fuzzy energy management strategy for parallel HEV based on pigeon-inspired optimization algorithm. Sci. China Technol. Sci. 60, 425–433 (2017)

    Article  Google Scholar 

  48. Zhang, D.F., Duan, H.B., Yang, Y.J.: Active disturbance rejection control for small unmanned helicopters via Lévy flight-based pigeon-inspired optimization. Aircr. Eng. Aerosp. Technol. 89, 946–952 (2017)

    Article  Google Scholar 

  49. Li, C., Duan, H.B.: Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function. Aerosp. Sci. Technol. 39, 352–360 (2014)

    Article  Google Scholar 

  50. Zhang, B., Duan, H.B.: Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment. IEEE/ACM Trans. Comput. Biol. Bioinf. 14, 97–107 (2017)

    Article  Google Scholar 

  51. Duan, H., Wang, X.: Echo state networks with orthogonal pigeon-inspired optimization for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2413–2425 (2016)

    Article  MathSciNet  Google Scholar 

  52. Jiang, P.P., Zhou, K., Zhu, Q.K., et al.: Route planning of armed helicopter based on pigeon-inspired optimization with threat heuristic. Electron Opt. Control 24, 56–61 (2017)

    Google Scholar 

  53. Sushnigdha, G., Joshi, A.: Re-entry trajectory optimization using pigeon inspired optimization based control profiles. Adv. Space Res. 62, 3170–3186 (2018)

    Article  Google Scholar 

  54. Xu, X., Deng, Y.: UAV power component-DC brushless motor design with merging adjacent-disturbances and integrated-dispatching pigeon-inspired optimization. IEEE Trans. Magn. 54, 1–7 (2018)

    Article  Google Scholar 

  55. Sun, Y., Duan, H., Xian, N.: Fractional-order controllers optimized via heterogeneous comprehensive learning pigeoninspired optimization for autonomous aerial refueling hose-drogue system. Aerosp. Sci. Technol. 81, 1–13 (2018)

    Article  Google Scholar 

  56. Li, S., Deng, Y.: Quantum-entanglement pigeon-inspired optimization for unmanned aerial vehicle path planning. Aircr. Eng. Aerosp. Technol. 91, 171–181 (2018)

    Article  Google Scholar 

  57. Zhang, D., Duan, H.: Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning. Neurocomputing 313, 229–246 (2018)

    Article  Google Scholar 

  58. Qiu, H., Duan, H.: A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Inform. Sci. 509, 515–529 (2020). https://doi.org/10.1016/j.ins.2018.06.061

    Article  MathSciNet  Google Scholar 

  59. Dos Santos Coelho, L., Alotto, P.: Gaussian artificial bee colony algorithm approach applied to Loney's solenoid benchmark problem. IEEE Trans Magn. 47(5), 1326–1329 (2011)

    Article  Google Scholar 

  60. Zhang, S., Duan, H.: Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration. Chin. J. Aeronaut. 28(1), 200–205 (2015)

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boumediene Selma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selma, B., Chouraqui, S., Selma, B. et al. Autonomous trajectory tracking of a quadrotor UAV using ANFIS controller based on Gaussian pigeon-inspired optimization. CEAS Aeronaut J 12, 69–83 (2021). https://doi.org/10.1007/s13272-020-00475-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-020-00475-6

Keywords

Navigation