Skip to main content
Log in

Multiscale virtual testing: the roadmap to efficient design of composites for damage resistance and tolerance

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach to the determination of the mechanical behaviour of composite materials up to failure using numerical and experimental techniques in parallel. A bottom-up multiscale virtual testing strategy is presented to take into account the physical mechanisms of deformation at different length scales on the behaviour of the composite. Starting from the microscale, the contributions of the basic constituents, microstructure and loading conditions to the mechanical response are considered in a rigorous way. This hierarchical multiscale approach describes systematically the material behaviour at different length scales from ply to laminate to component level, allowing the determination of ply properties, laminate characteristics and structural response. Additionally, this approach easily allows consideration of changes in properties of the constituents (fibre, matrices), fibre architecture or laminate lay-up and provides fast predictions of their influences on the macroscopic behaviour of composite structures. Hence, this approach constitutes a promising tool to provide significant efficiency gains in the design, testing and certification of composite aircraft structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. LLorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Canal, L.P.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23(44), 5130–5147 (2011)

    Article  Google Scholar 

  2. Ostergaard, M.G., Ibbotson, A.R., Le Roux, O., Prior, A.M.: Virtual testing of aircraft structures, CEAS. Aeronaut. J. 1, 83–103 (2011)

    Google Scholar 

  3. European Aviation Safety Agency: Certification specifications for large aeroplanes CS-25 amendment 5, 5 Sept (2008)

  4. Kaddour, A.S., Hinton, M.J. (Guest Editors): Evaluation of theories for predicting failure in polymer composite laminates under 3-D states of stress: Part A of the Second World-Wide Failure Exercise (WWFE-II). J. Compos. Mater. 46, 19–20 (2012)

  5. Kaddour, A.S., Hinton, M.J. (Guest Editors): The Second World-Wide Failure Exercise (WWFE-II): Part B: Evaluation of theories for predicting failure in polymer composite laminates under 3-D states of stress: comparison with experiments. J. Compos. Mater. 47(7), 6–7 (2013)

  6. Canal, L.P., González, C., Segurado, J., LLorca, J.: Intraply fracture of fiber-reinforced composites: microscopic mechanisms and modeling. Compos. Sci. Technol. 72(11), 1223–1232 (2012)

    Article  Google Scholar 

  7. González, C., LLorca, J.: Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos. Sci. Technol. 67(13), 2795–2806 (2007)

    Article  Google Scholar 

  8. Budiansky, B., Fleck, N.A.: Compressive kinking of fiber composites: a topical review. Appl. Mech. Rev. 47(6S), S246–S250 (1994). doi:10.1115/1.3124417

    Article  Google Scholar 

  9. LLorca, J., González, C., Molina-Aldareguía J.M., Lopes, C.S.: Multiscale modeling of composites: toward virtual testing… and beyond. JOM J. Miner. Metals Mater. Soc. (TMS) 65(2), 215–225 (2013)

  10. Rodríguez, M., Molina-Aldareguía, J.M., González, C., LLorca, J.: Determination of the mechanical properties of amorphous materials through instrumented nanoindentation. Acta Mater. 60(9), 3953–3964 (2012)

    Article  Google Scholar 

  11. Molina-Aldareguía, J.M., Rodríguez, M., González, C., LLorca, J.: An experimental and numerical study of the influence of local effects on the application of the fibre push-in test. Philos. Mag. 91(7–9), 1293–1307 (2011)

    Article  Google Scholar 

  12. Rodriguez, M., Molina-Aldareguía, J.M., González, C., LLorca, J.: A methodology to measure the interface shear strength by means of the fiber push-in test. Compos. Sci. Technol. 72(15), 1924–1932 (2012)

    Article  Google Scholar 

  13. Cox, B., Yang, Q.: In quest of virtual tests for structural composites. Science 314(5802), 1102–1107 (2006)

    Article  Google Scholar 

  14. Vogler, T.J., Hsu, S.-Y., Kyriakides, S.: Composite failure under combined compression and shear. Int. J. Solids Struct. 37, 1765 (2000)

    Article  MATH  Google Scholar 

  15. Totry, E., González, C., LLorca, J.: Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Compos. Sci. Technol. 68(3), 829–839 (2008)

    Article  MATH  Google Scholar 

  16. Canal, L.P., Segurado, J., LLorca, J.: Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear. Int. J. Solids Struct. 46(11), 2265–2274 (2009)

    Article  MATH  Google Scholar 

  17. Totry, E., Molina-Aldareguía, J.M., González, C., LLorca, J.: Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos. Sci. Technol. 70(6), 970–980 (2010)

    Article  Google Scholar 

  18. Totry, E., González, C., LLorca, J., Molina-Aldareguía, J.M.: Mechanisms of shear deformation in fiber-reinforced polymers: experiments and simulations. Int. J. Fract. 158(2), 197–209 (2009)

    Article  MATH  Google Scholar 

  19. Vaughan, T.J., McCarthy, C.T.: Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos. Sci. Technol. 71(3), 388–396 (2011)

    Article  Google Scholar 

  20. Naya, F., González, C., Lopes, C.S., Van der Veen, S., Pons, F.: Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Compos. Part A (2016). doi:10.1016/j.compositesa.2016.06.018

  21. Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, NASA/TM-2002-211737 (2002)

  22. Segurado, J., LLorca, J.: A new three-dimensional interface finite element to simulate fracture in composites. Int. J. Solids Struct. 41, 2977–2993 (2004)

    Article  MATH  Google Scholar 

  23. Romanowicz, M.: A numerical approach to predict the failure locus of fibre reinforced composites under combined transverse compression and axial tension. Comput. Mater. Sci. 51, 7–12 (2012)

    Article  Google Scholar 

  24. ASTM: Test Method D6671-01. American Society for Testing and Materials, West Conshohocken (2002)

  25. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)

    Article  Google Scholar 

  26. Dávila, C.G., Camanho, P.P., Rose, C.A.: Failure criteria for FRP laminates. J. Compos. Mater. 39, 323–343 (2005)

    Article  Google Scholar 

  27. Pinho, S.T., Iannucci, L., Robinson, P.: Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development. Compos. A Appl. Sci. Manuf. 37(1), 63–73 (2006)

    Article  Google Scholar 

  28. Kaddour, A.S., Hinton, M.J., Soden, P.D.: A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos. Sci. Technol. 64(3–4), 449–476 (2004)

    Article  Google Scholar 

  29. Sádaba, S., Romero, I., González, C., Llorca, J.: A stable X‐FEM in cohesive transition from closed to open crack. Int. J. Numer. Methods Eng. 101(7), 540–570 (2015)

    Article  MathSciNet  Google Scholar 

  30. Camanho, P.P., Maimí, P., Dávila, C.G.: Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol. 67(13), 2715–2727 (2007)

    Article  Google Scholar 

  31. Pinho, S.T., Robinson, P., Iannucci, L.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)

    Article  Google Scholar 

  32. Ladevèze, P., Lubineau, G.: On a damage mesomodel for laminates: micro–meso relationships, possibilities and limits. Compos. Sci. Technol. 61(15), 2149–2158 (2001)

    Article  Google Scholar 

  33. Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: Part I–Constitutive model. Mech. Mater. 39(10), 897–908 (2007)

    Article  Google Scholar 

  34. Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: Part II–Computational implementation and validation. Mech. Mater. 39(10), 909–919 (2007)

    Article  Google Scholar 

  35. Arévalo, E., González, C., Gálvez F., LLorca, J.: In: Gálvez, F., Sánchez-Gálvez, V. (eds.) 23rd International Symposium on Ballistics, Tarragona, Spain, pp. 1123–1132 (2007)

  36. Lopes, C.S., Camanho, P.P., Gürdal, Z., Maimí, P., González, E.V.: Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Compos. Sci. Technol. 69(7), 937–947 (2009)

    Article  Google Scholar 

  37. González, E.V., Maimí, P., Camanho, P.P., Lopes, C.S., Blanco, N.: Effects of ply clustering in laminated composite plates under low-velocity impact loading. Compos. Sci. Technol. 71(6), 805–817 (2011)

    Article  Google Scholar 

  38. Lopes, C.S., Sádaba, S., González, C., LLorca, J., Camanho, P.P.: Physically-sound simulation of low-velocity impact on fiber reinforced laminates. Int. J. Impact Eng. 92, 3–17 (2016)

    Article  Google Scholar 

  39. ASTM D3518/3518M-13: American Society for Testing and Materials (ASTM), West Conshohocken, PA, USA (2013)

  40. ASTM D6742/D6742M-12: American Society for Testing and Materials (ASTM), West Conshohocken, PA, USA (2012)

  41. ASTM D7136/7136M-05: American Society for Testing and Materials (ASTM), West Conshohocken, PA, USA (2005)

  42. González, C., Segurado, J., LLorca, J.: Technical report SimBaita2-01, Polytechnic University of Madrid, Spain (2006)

  43. Lopes, C.S., Camanho, P.P., Gürdal, Z., Tatting, B.F.: Progressive failure analysis of tow-placed, variable-stiffness composite panels. Int. J. Solids Struct. 44(25), 8493–8516 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the VIRTEST project, a collaboration between IMDEA Materials and Fokker Aerostructures B.V., and from the European Union’s 7th Framework Programme for the Cleansky Joint Technology Initiative under the Grant Agreement No. 632438 (GRA-01-053)—CRASHING project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Lopes.

Additional information

This paper is based on a presentation at the CEAS Air and Space Conference 2015, September 7–11, Delft, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, C.S., González, C., Falcó, O. et al. Multiscale virtual testing: the roadmap to efficient design of composites for damage resistance and tolerance. CEAS Aeronaut J 7, 607–619 (2016). https://doi.org/10.1007/s13272-016-0210-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-016-0210-7

Keywords

Navigation