Skip to main content
Log in

System architecture of HALAS—a helicopter slung load stabilisation and positioning system

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

To support helicopter pilots during slung load operations currently a pilot assistance system called Hubschrauber-Außenlast-Assistenzsystem (HALAS) is being developed within a cooperation of the German Aerospace Centre (DLR) and iMAR Navigation GmbH. The objective of this research is the demonstration of an automatic slung load stabilisation and positioning system during the flight test with DLR’s research helicopter Active Control Technology/Flying Helicopter Simulator (ACT/FHS). The automatic slung load control system is being designed to extend the functionalities of the helicopter’s stability, control and augmentation system. The control system will be able to handle the challenges of rescue hoist operations. This means compensation of additional roll, pitch and yaw moments created by a significant distance of the load suspension point to the helicopter’s centre of gravity and the handling of a variable cable length. To measure the slung load motion, an optical-inertial sensor is being developed by iMAR Navigation GmbH. In this paper, the overall system architecture of HALAS as well as the hardware integration into the ACT/FHS is explained. The optical-inertial sensor used for the slung load dynamics measurement and estimation is described in detail. Furthermore, a first system analysis of a simulation model used for the later controller design is presented. The focus of the stability analysis is laid on variations of cable length, load mass and load suspension point position. The control law development process itself is not part of this paper but will be published later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

ACT/FHS:

Active Control Technology/Flying Helicopter Simulator

AFCS:

Automatic flight control system

ALCS:

Automatic load control system

ALDS:

Automatic load damping system

ALPS:

Automatic load positioning system

AMRDEC:

Aeroflightdynamics Directorate of the U.S. Army

CAN:

Controller area network

CCD:

Charge-coupled device

CG:

Centre of gravity

DC:

Direct current

DGPS:

Differential global positioning system

DLR:

Deutsches Zentrum für Luft- und Raumfahrt e.V.

DO-160E:

Environmental conditions and test procedures for airborne equipment

DOF:

Degrees of freedom

DSP:

Digital signal processor

EC:

Eurocopter

EFK:

Extended Kalman Filter

EMC/EMI:

Electromagnetic compatibility/electromagnetic interference

GNSS:

Global navigation satellite system

GPS:

Global positioning system

HALAS:

Hubschrauber-Außenlast-Assistenzsystem

HDLC:

High-level data link control

LMR:

Load-mass ratio

MEMS:

Micro-electro-mechanical system

NoA2 :

No aiding for attitude

PIO:

Pilot induced oscillations

RASCAL:

Rotorcraft aircraft system concepts airborne laboratory

RLC:

Run length code

RPC:

Rotorcraft-pilot coupling

RS232:

Technical standard for data interfaces

RS422:

Technical standard for data interfaces

SCAS:

Stability control augmentation system

UAV:

Unmanned aerial vehicle

VRU:

Vertical reference unit

WGS-84:

World geodetic system 1984

A :

System matrix

B :

Control matrix

L :

Cable length (m)

X u :

Longitudinal direct damping derivative (1/s)

Y v :

Lateral direct damping derivative (1/s)

dPd0:

Pedal and collective control input (%)

dXdY :

Cyclic longitudinal and lateral control input (%)

g :

Gravitation constant (m/s2)

m :

Mass (kg)

pqr :

Roll, pitch and yaw rate (rad/s)

r HSP,b :

Suspension point position vector in body-fixed system (m)

t :

Time (s)

u :

Control vector

\(u,v,w\) :

Longitudinal, lateral and vertical body-fixed aerodynamic velocity (m/s)

u Pilot :

Pilot input

x :

State vector

y :

System output

x Pos :

Distance to target x direction (m)

y Pos :

Distance to target y direction (m)

θ :

Helicopter pitch attitude (rad)

ϕ :

Helicopter roll attitude (rad)

ϑ C :

Longitudinal geodetic cable angle (rad)

τ :

Equivalent time delay (s)

φ C :

Lateral geodetic cable angle (rad)

ω P :

Pendulum frequency (rad/s)

C :

Cable

H :

Helicopter

HSP :

Helicopter suspension point

L :

Load

P :

Pendulum

Pos :

Positioning

a :

Aerodynamic system

b :

Body-fixed system

e :

Earth-fixed system

\(\left( \cdot \right)\) :

Time derivative

References

  1. Matheson, N.: Stability of helicopter sling loads. Technical report aerodynamics note 364, Department of Defence, Aeronautical Research Laboratories, Melbourne, Victoria, Australia, 1976

  2. Pavel, M.D., Masarati, P., Smaili, H.: A retrospective survey of adverse rotorcraft pilot couplings in European perspective. In: Proceedings of the American Helicopter Society 68th Annual Forum, Forth Worth, TX, USA, 1–3 May 2012

  3. Hanno, B.: Simulation model for helicopter cargo handling investigations. In: Proceedings of the 7th ONERA DLR Aerospace Symposium, Toulouse, France, 10 October 2006

  4. Bisgaard, M.: Modeling, estimation, and control of helicopter slung load system. PhD thesis, Department of Electronic Systems, Section for Automation and Control, Aalborg University, Aalborg, November 2007

  5. Shaughnessy, J.D, Pardue, M.D.: Helicopter sling load accident/incident survey: 1968–1974. Technical Report TM X-74007, National Aeronautics and Space Administration-NASA, Langley Research Center, Hampton, Virgina, USA, March 1977

  6. AAIB Bulletin, Technical Report No: 8/2003 Ref: EW/C2002/05/07, CAA Air Accidents Investigation Branch, UK (2002)

  7. EHEST, EHEST analysis of 2000–2005 european helicopter accidents—final report (2010)

  8. Lusardi, J.A., Blanken, C.L., Braddom S.R.: UH-60 external load handling qualities evaluation. In: Proceedings of the 35th European Rotorcraft Forum, Hamburg, Germany, 22–25 September 2009

  9. Lusardi, J.A., Blanken, C.L., Braddom, S.R., Cicolani, L.S., Tobias, E.L.: Development of external load handling qualities criteria for rotorcraft. In: Proceedings of the American Helicopter Society 66th Annual Forum, Phoenix, Arizona, USA, 11–13 May 2010

  10. Lucassen, L.R., Sterk, F.J.: Dynamic stability analysis of a hovering helicopter with a sling load. J. Am. Helicopter Soc. 10(2), 6–12 (1965)

    Article  Google Scholar 

  11. Ivler, C.M., Powell, J.D., Tischler, M.B., Fletcher, J.W., Ott, C.: Design and flight test of a cable angle/rate feedback flight control system for the RASCAL JUH-60 helicopter. In: Proceedings of the American Helicopter Society 68th Annual Forum, Fort-Worth, TX, USA, 1–3 May 2012

  12. Cicolani, L.S., Ehlers, G.E.: Modeling and simulation of a helicopter slung load stabilization device. In: Proceedings of the American Helicopter Society 58th Annual Forum, Montreal, Canada, 11–13 June 2002

  13. Cicolani, L.S., Raz, R., Rosen, A., Gordon, R., Cone, A., Theron, J.N.: Flight test, simulation and passive stabilization of a cargo container slung load in forward flight. In: Proceedings of the American Helicopter Society 63rd Annual Forum, Virgina Beach, VA, USA, 1–3 May 2007

  14. Gera, J., Farmer, S.W.: A method of automatically stabilizing helicopter sling loads. Technical Report NASA TN D-7593, National Aeronautics and Space Administration-NASA, July 1974

  15. Raz, R., Rosen, A., Ronen, T.: Active aerodynamic stabilization of a helicopter/sling-load system. J. Aircraft 26(9), 822–828 (1989)

    Article  Google Scholar 

  16. Pardue, M.D., Shaughnessy J.D.: Design and analysis of an active jet control system for helicopter sling loads. Technical Report 1397, National Aeronautics and Space Administration-NASA, Langley Research Center, Hampton, VA, USA, 1979

  17. Garnett, T.S.: Design and flight test of the active arm external load stabilization system (AAELSS II). In: Proceedings of the American Helicopter Society 32nd Annual Forum, Washington, D.C., USA, 10–12 May 1976

  18. Dukes, T.A.: Maneuvering heavy sling loads near hover part I: Damping the pendulous motion. In: Proceedings of the American Helicopter Society 28th Annual Forum, Washington, D.C., USA, 17–19 May 1972

  19. Dukes, T.A.: Maneuvering heavy sling loads near hover part II: Some elementary maneuvers. In: Proceedings of the American Helicopter Society 28th Annual Forum, Washington, D.C., USA, 17–19 May 1972

  20. Asseo, S.J., Whitbeck, R.F.: Control requirements for sling-load stabilization in heavy lift helicopters. J. Am. Helicopter Soc. 18(3), 23–31 (1973)

    Google Scholar 

  21. Liu, D.T.: In-flight stabilization of externally slung helicopter loads. Technical Report USAAMRLD 73-5, May 1973

  22. Hutto, A.J.: Flight-test report on the heavy-lift helicopter flight-control system. In: Proceedings of the 31st Annual National Forum of the American Helicopter Society, Washington, D.C., USA, 13–15 May 1975

  23. Szustak, L.S., Jenney, D.S.: Control of large crane helicopters. J. Am. Helicopter Soc. 16(3), 11–22 (1971)

    Article  Google Scholar 

  24. Ivler, C.M., Tischler, M.B., Powell, J.D.: Cable angle feedback control systems to improve handling qualities for helicopters with slung loads. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, USA, 8–11 August 2011

  25. Sahasrabudhe, V., Faynberg, A., Kubik, S., Tonello, O., Xin, H., Engel, D., Renfrow, J.: CH-53K control laws: an overview and some analytical results. In: Proceedings of the American Helicopter Society 66th Annual Forum, Phoenix, AZ, USA, 11–13 May 2010

  26. McGonagle, J.G.: The design, test, and development challenges of converting the K-MAX helicopter to a heavy lift rotary wing UAV. In: Proceedings of the American Helicopter Society 57th Annual Forum, Washington, D.C., USA, 9–11 May 2001

  27. Bisgaard, M., la Cour-Habo, A., Bendtsen, J.D.: Input shaping for helicopter slung load swing reduction. In: Proceedings of the AIAA guidance, navigation and control conference and exhibit, Honolulu, HI, USA, 18–21 August 2008

  28. Bisgaard, M., la Cour-Habo, A., Bendtsen, J.D.: Swing damping for helicopter slung load systems using delayed feedback. In: Proceedings of the AIAA guidance, navigation, and control conference, Chicago, IL, USA, 10–13 August 2009

  29. Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: Proceedings of the IEEE international conference on robotics and automation, Kobe, Japan, 12–17 May 2009

  30. Bernard, M., Kondak, K., Hommel, G.: Load transportation system based on autonomous small size helicopters. Aeronaut. J. 114(1153), 191–198 (2010)

    Google Scholar 

  31. Hamers, M., Bouwer, G.: Flight director for helicopter with slung load. In: Proceedings of the 30th European Rotorcraft Forum, Marseille, France, 14–16 September 2004

  32. Hamers, M., von Hinüber, E., Richter, A.: CH53G experiences with a flight director for slung load handling. In: Proceedings of the American Helicopter Society 64th Annual Forum, Montréal, Canada, April 29–May 1 2008

  33. Brenner, H.: Automatische Pendeldämpfung und Positionierung von Hubschrauber-Außenlasten. Dissertation, Technische Universität Braunschweig, Braunschweig, Deutschland (2009)

  34. Brenner, H.: Helicopter sling load pendulum damping. In: Proceedings of the 35th European Rotorcraft Forum, Hamburg, Germany, 22–25 September 2009

  35. Brenner, H.: Helicopter sling load positioning. In: Proceedings of the 35th European Rotorcraft Forum, Hamburg, Germany, 22–25 September 2009

  36. Kaletka, J., Butter, U.: FHS—the new research helicopter: ready for service. In: Proceedings of the 29th European Rotorcraft Forum, Friedrichshafen, Germany, 16–18 September 2003

  37. iMAR Navigation GmbH, iVRU-CB-M, Small size vertical reference unit with advanced MEMS gyros, MEMS accelerometers and integrated strapdown processor. rev. 2.05, http://www.imar-navigation.de/downloads/VRU_CB_M.pdf. (2012)

  38. Kohl, P., Cartarius, R., Knedlik, S., von Hinüber, E.: Design of an unaided aircraft attitude reference system with medium accurate gyroscopes for higher performance attitude requirements. In: Proceedings of symposium gyro technology—symposium inertial sensors and systems, Karlsruhe, Germany, 2011

  39. Tischler, M.B., Remple, R.K.: Aircraft and rotorcraft system identification—engineering methods with flight test examples. American Institute of Aeronautics and Astronautics-AIAA (2006)

  40. Padfield, G.D.: Helicopter flight dynamics—the theory and application of flying qualities and simulation modelling, 2nd edn. Blackwell Publishing, Oxford (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nonnenmacher.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 10–12, 2012, Berlin, Germany.

Appendices

Appendix

In this section, the differential equations of motion for the helicopter with a slung load are derived. The helicopter is modelled as a rigid body with six DOF and the load is modelled as a point mass with three DOF. Helicopter and load motion are coupled by the suspension cable, which is represented by a spring-damper system exerting the cable force as constraining force on helicopter and load (see Fig. 22). The formulation of the equations for the helicopter and the load are set up separately.

Fig. 22
figure 22

Helicopter coupled with slung load

The general nonlinear equation of motion of the helicopter for the translational motion is

$$\dot{\varvec{V}}_{\text{H,b}} = \left[ {\begin{array}{*{20}c} {\dot{u}} \\ {\dot{v}} \\ {\dot{w}} \\ \end{array} } \right]_{\text{H,b}} = m_{\text{H}}^{ - 1} \mathop \sum \nolimits \varvec{F}_{\text{H,b}} -\varvec{\omega}_{\text{H,b}} \times \varvec{V}_{\text{H,b}}$$
(4)

with the sum of the external forces \(\mathop \sum \nolimits \varvec{F}_{\text{H,b}}\), which is composed of the aerodynamic force \(\varvec{F}_{\text{H,b}}^{\text{A}}\), gravitational force \(\varvec{F}_{\text{H,b}}^{G}\) and cable force \(\varvec{F}_{\text{b}}^{\text{C}}\), each of them formulated in the body-fixed frame.

$$\mathop \sum \nolimits \varvec{F}_{\text{H,b}} = \varvec{F}_{\text{H,b}}^{\text{A}} + \varvec{F}_{\text{H,b}}^{\text{G}} + \varvec{F}_{\text{b}}^{\text{C}} = \varvec{T}_{\text{ba}} \varvec{F}_{\text{H,a}}^{\text{A}} + \varvec{T}_{\text{be}} \varvec{F}_{\text{H,e}}^{\text{G}} + \varvec{T}_{\text{be}} \varvec{F}_{\text{e}}^{\text{C}}.$$
(5)

\(\varvec{T}_{\text{ba}}\) and \(\varvec{T}_{\text{be}}\) are the transformation matrices from the aerodynamic system and from the earth-fixed system to the body-fixed system, respectively. The equation of motion of the rotational motion is derived by

$$\dot{\varvec{\omega }}_{\text{H,b}} = \left[ {\begin{array}{*{20}c} {\dot{p}} \\ {\dot{q}} \\ {\dot{r}} \\ \end{array} } \right]_{\text{H,b}} = \varvec{I}_{\text{H}}^{ - 1} \mathop \sum \nolimits \varvec{M}_{\text{H,b}} - \varvec{I}_{\text{H}}^{ - 1}\varvec{\omega}_{\text{H,b}} \times \left( {\varvec{I}_{\text{H}}\varvec{\omega}_{\text{H,b}} } \right)$$
(6)

where \(\varvec{I}_{\text{H}}\) is the helicopter inertia tensor and \(\mathop \sum \nolimits \varvec{M}_{\text{H,b}}\) is the sum of the external moments applied at the CG.

$$\mathop \sum \nolimits \varvec{M}_{{{\text{H,}}b}} = \varvec{M}_{\text{H,b}}^{\text{A}} + \varvec{M}_{\text{b}}^{\text{C}} = \varvec{T}_{\text{ba}} \varvec{M}_{\text{H,a}}^{\text{A}} + \varvec{r}_{\text{HSP,b}} \times \varvec{F}_{\text{b}}^{\text{C}}.$$
(7)

\(\varvec{M}_{\text{H,a}}^{\text{A}}\) is the aerodynamic moment. If the load is suspended outside of the CG the cable force exerts a moment on the helicopter with the corresponding lever arm \(\varvec{r}_{\text{HSP,b}}\)—the distance between CG and suspension point.

Equations of motion—load

The load as a point mass has no rotational DOF, which means that the body-fixed frame of the load is aligned with the inertial frame. The differential equations of the load are given by

$$\dot{\varvec{V}}_{\text{L,e}} = \left[ {\begin{array}{*{20}c} {\dot{u}} \\ {\dot{v}} \\ {\dot{w}} \\ \end{array} } \right]_{\text{L,e}} = m_{\text{L}}^{ - 1} \mathop \sum \nolimits \varvec{F}_{\text{L,e}}.$$
(8)

\(\mathop \sum \nolimits \varvec{F}_{\text{L,e}}\) is the sum of the external forces. The forces acting on the load are as for the helicopter the aerodynamic force \(\varvec{F}_{\text{L,e}}^{\text{A}}\), gravitational force \(\varvec{F}_{\text{L,e}}^{\text{G}}\) and the cable force \(\varvec{F}_{\text{e}}^{\text{C}}\):

$$\mathop \sum \nolimits \varvec{F}_{\text{L,e}} = \varvec{F}_{\text{L,e}}^{\text{A}} + \varvec{F}_{\text{L,e}}^{\text{G}} + \varvec{F}_{\text{e}}^{\text{C}}.$$
(9)

The aerodynamic force acting on the load is a drag-only force in direction of the local airflow velocity,

$$\varvec{F}_{\text{L,e}}^{\text{A}} = \frac{\rho }{2}\left| {\varvec{V}_{\text{L,e}} } \right|\varvec{V}_{\text{L,e}} S_{\text{L}} c_{\text{D}}$$
(10)

with the density \(\rho\), surface \(S_{\text{L}}\) and drag coefficient \(c_{\text{D}}\).

Calculation of the constraining cable force

In the following, the derivation of the constraining cable force which couples the helicopter and the load motion will be described. The cable is represented by a spring-damper system with the resultant cable force \(\varvec{F}_{\text{e}}^{\text{C}}\) (see Fig. 22). For the calculation of the cable force in the earth-fixed frame, the load position relative to the suspension point at the helicopter \(\varvec{x}_{\text{C,e}}\) is determined:

$$\varvec{x}_{\text{C,e}} = \varvec{x}_{\text{L,e}} - \varvec{x}_{{{\text{HSP}},{\text{e}}}}$$
(11)

with the load position \(\varvec{x}_{\text{L,e}}\) and the suspension point \(\varvec{x}_{{{\text{HSP}},{\text{e}}}}\) in the earth-fixed frame. The suspension point can be obtained as follows:

$$\varvec{x}_{{{\text{HSP}},{\text{e}}}} = \varvec{x}_{\text{H,e}} + \varvec{T}_{\text{eb}} \varvec{r}_{{{\text{HSP}},{\text{b}}}} .$$
(12)

\(\varvec{T}_{\text{eb}} \varvec{ }\) is the transformation matrix with the Euler angles that performs the transformation from the body-fixed to the earth-fixed frame. The actual cable length \(L\) is the absolute value of the relative load position:

$$L = \left| {\varvec{x}_{\text{C,e}} } \right|.$$
(13)

The cable force is the sum of the spring and damping force

$$\varvec{F}_{\text{e}}^{\text{C}} = (F_{\text{spring}} + F_{\text{damp}} )\frac{{\varvec{x}_{\text{C,e}} }}{L}$$
(14)

where the spring force is proportional to the elongation,

$$F_{\text{spring}} = c_{\text{cable}} {\text{d}}L$$
(15)

with the spring constant \(c_{\text{cable}}\) and the elongation

$${\text{d}}L = L - L_{0}$$
(16)

where \(L_{0}\) is the unstretched cable length.

The damping force is determined by the elongation rate \({\text{d}}\dot{L}\):

$$F_{\text{damp}} = d_{\text{cable}} {\text{d}}\dot{L} = \left( {\dot{\varvec{x}}_{\text{L,e}} - \dot{\varvec{x}}_{{{\text{HSP}},{\text{e}}}} } \right)\frac{{\varvec{x}_{\text{C,e}} }}{L}$$
(17)

where \(d_{\text{cable}}\) is the damping coefficient,

$$d_{\text{cable}} = 2D\sqrt {c_{\text{cable}} m_{\text{L}} } .$$
(18)

Further, the velocity of the suspension point is calculated by:

$$\dot{\varvec{x}}_{{{\text{HSP}},{\text{e}}}} = \varvec{T}_{\text{eb}} \left( {\varvec{V}_{\text{H,b}} +\varvec{\omega}_{\text{H,b}} \times \varvec{r}_{{{\text{HSP}},{\text{b}}}} } \right).$$
(19)

It is assumed that the cable exerts only a tension force. In case of a loose cable, the cable force is set to zero, leading to the following distinction:

$$\varvec{F}_{\text{e}}^{\text{C}} = \left\{ {\begin{array}{*{20}c} {\varvec{F}_{\text{e}}^{\text{C}} , \quad {\text{d}}L > 0} \\ {0, \quad {\text{d}}L \le 0} \\ \end{array} } \right..$$
(20)

Calculation of the cable angles and rates

The modelling of the load system with an elastic suspension cable and a point mass as the load leads to a formulation of the differential equations of motions, where the cable or pendulum angles and rates do not appear explicitly. For this reason, they have to be determined by the relative position of the load in respect to the helicopter (see Eq. 11). In the next step, the relative load position is transformed to the coordinate system that is aligned with the helicopter heading \(\psi\)

$$\varvec{x}_{{{\text{C,e}}\psi }} = \left[ {\begin{array}{*{20}c} {x_{\text{C}} } \\ {y_{\text{C}} } \\ {z_{\text{C}} } \\ \end{array} } \right]_{{{\text{e}}\psi }} = \varvec{T}_{\psi } \varvec{x}_{\text{C,e}} = \left[ {\begin{array}{*{20}c} {\cos \psi } & {\sin \psi } & 0 \\ { - \sin \psi } & {\cos \psi } & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\varvec{x}_{\text{C,e}} .$$
(21)

The transformation ensures that the longitudinal and lateral cable angle are related to the corresponding helicopter axis, i.e. the longitudinal cable angle describes the aft and fore swinging of the load and the lateral cable angle describes the lateral load swinging motion, seen from the pilot’s view. The longitudinal and lateral cable angles are calculated by:

$$\vartheta_{\text{C}} = { \arctan }\left( {\frac{{x_{{{\text{C,e}}\psi }} }}{{z_{{{\text{C,e}}\psi }} }}} \right)$$
(22)

and

$$\varphi_{\text{C}} = - { \arctan }\left( {\frac{{y_{{{\text{C}},{\text{e}}\psi }} }}{{z_{{{\text{C,e}}\psi }} }}} \right).$$
(23)

The rates are obtained by time derivation of the corresponding angles:

$$\dot{\vartheta }_{\text{C}} = \frac{\text{d}}{{{\text{d}}t}}\vartheta_{\text{C}}$$
(24)

and

$$\dot{\varphi }_{\text{C}} = \frac{\text{d}}{{{\text{d}}t}}\varphi_{\text{C}} .$$
(25)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonnenmacher, D., Kim, H., Götz, J. et al. System architecture of HALAS—a helicopter slung load stabilisation and positioning system. CEAS Aeronaut J 5, 127–143 (2014). https://doi.org/10.1007/s13272-013-0095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-013-0095-7

Keywords

Navigation