Skip to main content
Log in

Genome constitution and evolution of Elymus atratus (Poaceae: Triticeae) inferred from cytogenetic and phylogenetic analysis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet.

Objective

To identify the genome constitution and origin of E. atratus.

Methods

In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed.

Results

Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome.

Conclusion

Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adderley S, Sun GL (2014) Molecular evolution and nucleotide diversity of nuclear plastid phosphoglycerate kinase (PGK) gene in Triticeae (Poaceae). Gene 533:142–148

    Article  CAS  PubMed  Google Scholar 

  • Assadi M, Runemark H (1995) Hybridisation, genomic constitution and generic delimitation in Elymus s. l. (Poaceae: Triticeae). Plant Syst Evol 194:189–205

    Article  Google Scholar 

  • Barkworth ME, Jacobs SWL (2009) Connorochloa: a new genus in Triticeae. Breed Sci 59:685–686

    Article  Google Scholar 

  • Baum BR, Yang JL, Yen C (1995) Taxonomic separation of Kengyilia (Poaceae: Triticeae) in relation to nearest related Roegneria, Elymus, and Agropyron, based on some morphological characters. Plant Syst Evol 194:123–132

    Article  Google Scholar 

  • Baum BR, Yang JL, Yen C, Agafonov AV (2011) A taxonomic synopsis of the genus Campeiostachys Drobov. J Syst Evol 49:146–159

    Article  Google Scholar 

  • Cai LB (1997) A taxonomical study on the genus Roegneria C. Koch from China. Acta Phytotax Sin 35:148–177

    Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement: 16th Stadler genetics symposium. Springer US, Boston, pp 209–279

    Chapter  Google Scholar 

  • Dong ZZ, Fan X, Sha LN, Wang Y, Zeng J, Kang HY, Zhang HQ, Wang XL, Zhang L, Ding CB (2015) Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. BMC Plant Biol 15:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Dou QW, Zhang TL, Tsujimoto H (2011) Physical mapping of repetitive sequences and genome analysis in six Elymus species by in situ hybridization. J Syst Evol 49:347–352

    Article  Google Scholar 

  • Doyle JJT, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Gao G, Gou XM, Wang Q, Zhang Y, Deng JB, Ding CB, Zhang L, Zhou YH, Yang RW (2014) Phylogenetic relationships and Y genome origin in Chinese Elymus (Triticeae: Poaceae) based on single copy gene DMC1. Biochem Syst Ecol 57:420–426

    Article  CAS  Google Scholar 

  • Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137

    Article  CAS  PubMed  Google Scholar 

  • Han FP, Gao Z, Birchler JA (2009) Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in Maize. Plant Cell 21:1929–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison JS (1992) Molecular cytogenetics, cytology and genomic comparisons in the Triticeae. Hereditas 116:93–99

    Article  Google Scholar 

  • Huang SX, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci 99:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jensen KB (1990) Cytology, fertility, and morphology of Elymus kengii (Keng) Tzvelev and E. grandiglumis (Keng) A. Lve (Triticeae: Poaceae). Genome 33:563–570

    Article  Google Scholar 

  • Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae (Gramineae). Syst Bot 21:321–347

    Article  Google Scholar 

  • Kimber G, Alonso LC (1981) The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can J Genet Cytol 23:235–254

    Article  Google Scholar 

  • Kuo PC (1987) Flora republicae popularis sinicae. Science Press, Beijing

    Google Scholar 

  • Lei YX, Fan X, Sha LN, Wang Y, Kang HY, Zhou YH, Zhang HQ (2016) Phylogenetic relationships and the maternal donor of Roegneria (Triticeae: Poaceae) based on three nuclear DNA sequences (ITS, Acc1, and Pgk1) and one chloroplast region (trnL-F). J Syst Evol 65:185–191

    CAS  Google Scholar 

  • Lei YX, Liu J, Fan X, Sha LN, Wang Y, Kang HY, Zhou YH, Zhang HQ (2018) Phylogeny and maternal donor of Roegneria and its affinitive genera (Poaceae: Triticeae) based on sequence data for two chloroplast DNA regions (ndhF and trnH–psbA). J Syst Evol 56:105–119

    Article  Google Scholar 

  • Lei YX, Fan X, Sha LN, Wang Y, Kang HY, Zhou YH, Zhang HQ (2022) Phylogenetic relationships and the maternal donor of Roegneria (Triticeae: Poaceae) based on three nuclear DNA sequences (ITS, Acc1, and Pgk1) and one chloroplast region (trnL-F). J Syst Evol 60:305–318

    Article  Google Scholar 

  • Li CB, Zhang DM, Ge S, Lu BR, Hong DY (2001) Identification of genome constitution of Oryza malampuzhaensis, O. minuta, and O. punctata by multicolor genomic in situ hybridization. Theor Appl Genet 103:204–211

    Article  CAS  Google Scholar 

  • Liu YH (1985) Studies on the karyotypes of 11 species of Elymus from China. Plant Sci J 3:325–330

    Google Scholar 

  • Liu QL, Ge S, Tang HB, Zhang XL, Zhu GF, Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol 170:411–420

    Article  CAS  PubMed  Google Scholar 

  • Liu QL, Liu L, Ge S, Fu LP, Bai SQ, Lv X, Wang QK, Chen W, Wang FY, Wang LH et al (2022) Endo-allopolyploidy of autopolyploids and recurrent hybridization—A possible mechanism to explain the unresolved Y-genome donor in polyploid Elymus species (Triticeae: Poaceae). J Syst Evol 60:344–360

    Article  Google Scholar 

  • Löve Á (1984) Conspectus of the Triticeae. Feddes Repertorium 95:425–521

    Google Scholar 

  • Lu BR (1993) Meiotic studies of Elymus nutans and E. jacquemontii (Poaceae, Triticeae) and their hybrids with Pseudoroegneria spicata and seventeen Elymus species. Plant Syst Evol 186:193–212

    Article  Google Scholar 

  • Lu BR, Yan J, Yang JL (1990) Cytological observations on Triticeae materials from Xinjiang. Acta Bot Yunnan 12:57–66

    Google Scholar 

  • Lucía V, Enrique R, Anamthawat-Jónsson K, Martínez-Ortega MM (2019) Cytogenetic evidence for a new genus of Triticeae (Poaceae) endemic to the Iberian Peninsula: description and comparison with related genera. Bot J Linn Soc 4:523–546

    Article  Google Scholar 

  • Mason-Gamer RJ, Orme NL, Anderson CM (2002) Phylogenetic analysis of north American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Mason-Gamer RJ, Burns MM, Naum M (2005) Polyploidy, introgression, and complex phylogenetic patterns within Elymus. Czech J Genet Plant Breed 41:21–26

    Article  Google Scholar 

  • Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, Kilian B (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9:e85761

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasernakhaei F, Rahiminejad MR, Saeidi H, Tavassoli M (2015) Phylogenetic relationships among the Iranian Triticum diploid gene pool as inferred from the loci Acc1 and Pgk1. Phytotaxa 201:111–121

    Article  Google Scholar 

  • Okito P, Mott IW, Wu YJ, Wang RC (2009) A Y genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae: Gramineae). Genome 52:391–400

    Article  CAS  PubMed  Google Scholar 

  • Ørgaard M, Heslop-Harrison JS (1994) Investigation of genome relationships between Leymus psathyrostachys and Hordeum inferred from genomic DNA: DNA in situ hybridization. Ann Botany 73:195–203

    Article  Google Scholar 

  • Petersen G, Seberg O (2002) Molecular evolution and phylogenetic application of DMC1. Mol Phylogenet Evol 22:43–50

    Article  CAS  PubMed  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  CAS  PubMed  Google Scholar 

  • Petersen G, Seberg O, Salomon B (2011) The origin of the H, St, W, and Y genomes in allotetraploid species of Elymus L. and Stenostachys Turcz. (Poaceae: Triticeae). Plant Syst Evol 291:197–210

    Article  Google Scholar 

  • Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rauscher JT, Doyle JJ, Brown AH (2004) Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto S, Muramatsu M (1966) Cytogenetic studies in the tribe Triticeae. II. Tetraploid and hexaploid hybrids of Agropyron. Japanese J Genet 41:155–168

    Article  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. In, pp 1–59

  • Sha LN, Fan X, Yang RW, Kang HY, Ding CB, Zhang L, Zheng YL, Zhou YH (2010) Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Acc1, DMC1 and chloroplast trnL-F sequences. Mol Phylogenet Evol 54:327–335

    Article  CAS  PubMed  Google Scholar 

  • Sha LN, Fan X, Wang XL, Dong ZZ, Zeng J, Zhang HQ, Kang HY, Wang Y, Liao JQ, Zhou YH (2017) Genome origin, historical hybridization and genetic differentiation in Anthosachne australasica (Triticeae; Poaceae), inferred from chloroplast rbc L, trn H- psb A and nuclear Acc1 gene sequences. Ann Botany 119:95–107

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  CAS  Google Scholar 

  • Sun G, Komatsuda T (2010) Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Mol Phylogenet Evol 56:727–733

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Ni Y, Daley T (2008) Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol Phylogenet Evol 46:897–907

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Zhang HQ, Chen WH, Deng MQ, Zhou YH (2021) Genome composition and taxonomic revision of Elymus purpuraristatus and Roegneria calcicola (Poaceae: Triticeae) based on cytogenetic and phylogenetic analyses. Bot J Linn Soc 196:245–255

    Article  Google Scholar 

  • Tan L, Huang QX, Song Y, Wu DD, Cheng YR, Zhang CB, Sha LN, Fan X, Kang HY, Wang Y et al (2022) Biosystematics studies on Elymus breviaristatus and Elymus sinosubmuticus (Poaceae: Triticeae). BMC Plant Biol 22:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang C, Qi J, Chen N, Sha LN, Wang Y, Zeng J, Kang HY, Zhang HQ, Zhou YH, Fan X (2017) Genome origin and phylogenetic relationships of Elymus villosus (Triticeae: Poaceae) based on single-copy nuclear Acc1, Pgk1, DMC1 and chloroplast trnL-F sequences. Biochem Syst Ecol 70:168–176

    Article  CAS  Google Scholar 

  • Torabinejad J, Mueller RJ (1993) Genome analysis of intergeneric hybrids of apomictic and sexual Australian Elymus species with wheat, barley and rye: implication for the transfer of apomixis to cereals. Theor Appl Genet 86:288–294

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Shi QH, Su HD, Wang Y, Sha LN, Fan X, Kang HY, Zhang HQ, Zhou YH (2017) St2-80 - a new FISH marker for St genome and genome analysis in Triticeae. Genome 60:553–563

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jiang YY, Shi QH, Wang Y, Sha LN, Fan X, Kang HY, Zhang HQ, Sun GL, Zhang L et al (2019) Genome constitution and evolution of Elytrigia lolioides inferred from Acc1, EF-G, ITS, TrnL-F sequences and GISH. BMC Plant Biol 19:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan C, Hu Q, Sun G (2014) Nuclear and chloroplast DNA phylogeny reveals complex evolutionary history of Elymus pendulinus. Genome 57:97–109

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Zhang HQ, Zhao FQ, Liu XY, Fan X, Sha LN, Kang HY, Wang Y, Zhou YH (2015) Genome constitution of Elymus tangutorum (Poaceae: Triticeae)inferred from meiotic pairing behavior and genomic in situ hybridization. J Syst Evol 53:529–534

    Article  Google Scholar 

  • Yang C-R, Baum B-R, Chen W-H, Zhang H-Q, Liu X-Y, Fan X, Sha L-N, Kang H-Y, Wang Y, Zhou Y-H (2016) Genomic constitution and taxonomy of the Chinese hexaploids Elymus cylindricus and E. breviaristatus (Poaceae: Triticeae). Bot J Linn Soc 182:650–657

    Article  Google Scholar 

  • Yen C, Yang JL (1990) Kengyilia gobicola, a new taxon from West China. Can J Bot 68:1894–1897

    Article  Google Scholar 

  • Yen C, Yang JL, Baum BR (2005) Douglasdeweya: a new genus, with a new species and a new combination (Triticeae: Poaceae). Can J Bot 83:413–419

    Article  Google Scholar 

  • Yen C, Yang JL, Baum BR (2006) Biosystematics of Triticeae: volume I. China Agricultural Press, Beijing

    Google Scholar 

  • Yen C, Yang JL, Baum BR (2011) Biosystematics of Triticeae: volume III. China Agricultural Press, Beijing

    Google Scholar 

  • Yen C, Yang JL, Baum BR (2013) Biosystematics of Triticeae: volume V. China Agricultural Press, Beijing

    Google Scholar 

  • Yu HQ, Zhang C, Ding CB, Zhang HQ, Zhou YH (2010) Genome constitutions of Roegneria alashanica, R. elytrigioides, R. magnicaespes and R. grandis (Poaceae: Triticeae) via genomic in-situ hybridization. Nord J Bot 28:1–6

    Article  CAS  Google Scholar 

  • Zhang HQ, Zhou YH (2007) Meiotic analysis of the interspecific and intergeneric hybrids between Hystrix patula Moench and H. Duthiei ssp. longearistata, Pseudoroegneria, Elymus, Roegneria, and Psathyrostachys species (Poaceae, Triticeae). Bot J Linn Soc 153:213–219

    Article  Google Scholar 

  • Zhang HQ, Yang RW, Dou QW, Tsujimoto H, Zhou YH (2006) Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Res 14:595–604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to Xuehua Deng for her management of the experimental plants. This study was supported by the National Natural Science Foundation of China (Grant Nos. 32270388 and 32200180) and the Science and Technology Bureau of Sichuan Province (23NSFSC1995).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Tan or Yong-Hong Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1 The accession numbers of Acc1 gene sequences used in phylogenetic analysis; Table S2 The accession numbers of DMC1 gene sequences used in phylogenetic analysis; Table S3 The accession numbers of matK gene sequences used in phylogenetic analysis. Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Wu, DD., Zhang, CB. et al. Genome constitution and evolution of Elymus atratus (Poaceae: Triticeae) inferred from cytogenetic and phylogenetic analysis. Genes Genom 46, 589–599 (2024). https://doi.org/10.1007/s13258-024-01496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-024-01496-9

Keywords

Navigation