Skip to main content
Log in

Transcriptome profiling suggests roles of innate immunity and digestion metabolism in purplish Washington clam

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The purplish Washington clam (Saxidomus purpuratus) in the family Veneridae is distributed widely along the intertidal zones of northeast Asia and is increasingly being utilized as a commercially important food resource. Bivalves maintain homeostasis by regulating their food intake and digestion, innate immunity, and biotransformation in a mollusk-specific organ, the digestive gland. To understand digestive gland-specific pathways, we generated a high-quality de novo assembly of the digestive gland transcriptome of this clam using the Illumina Miseq platform. A total of 9.9 million raw reads were obtained and assembled using the Oases assembly platform, resulting in 27,358 contigs with an N50 of 433 bp. Functional gene annotations were performed using Gene Ontology, Eukaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes pathway analyses. In the transcriptome, many crucial genes involved in innate immunity and digestion metabolism were detected. A number of enzymes associated with drug metabolism were annotated, as much as that identified from the whole transcriptome of the Pacific oyster Crassostrea gigas. We provide valuable sequence information of S. purpuratus to predict functional understandings of the bivalve-specific digestive gland. This resource will be valuable for researchers comparing gene compositions and their expression levels in the digestive glands of bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao X, He C, Gao X, Li Y, Gao L, Jiang B, Liu W (2016) The complete mitochondrial genome of Saxidomus purpuratus (Veneroida: Veneridae). Mitochondrial DNA A 27:3648–3649

    Article  CAS  Google Scholar 

  • Barkalova VO, Fedosov AE, Kantor YI (2016) Morphology of the anterior digestive system of tonnoideans (Gastropoda: Caenogastropoda) with an emphasis on the foregut glands. Molluscan Res 36:54–73

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cajaraville MP, Diez G, Marigoḿez I, Angulo E (1990) Responses of the basophilic cells of the digestive gland of mussels to petroleum hydrocarbon exposure. Dis Aquat Org 9:221–228

    Article  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21

    Article  CAS  PubMed  Google Scholar 

  • Choi HG, Moon HB, Choi M, Yu J (2011) Monitoring of organic contaminants in sediments from the Korean coast: spatial distribution and temporal trends (2001–2007). Mar Pollut Bull 62:1352–1361

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  PubMed  Google Scholar 

  • Dimitriadis VK, Domouhtsidou GP, Cajaraville MP (2004) Cytochemical and histochemical aspects of the digestive gland cells of the mussel Mytilus galloprovincialis (L.) in relation to function. J Mol Histol 35:501–509

    Article  CAS  PubMed  Google Scholar 

  • Fretter V, Graham A (1994) British prosobranch molluscs. Ray Society, London

    Google Scholar 

  • Gerdol M, De Moro G, Manfrin C, Milandri A, Riccardi E, Beran A, Venier P, Pallavicini A (2014) RNA sequencing and de novo assembly of the digestive gland transcriptome in Mytilus galloprovincialis fed with toxinogenic and non-toxic strains of Alexandrium minutum. BMC Res Notes 7:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon A, Hannon G (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. http://hannonlab.cshl.edu/fastx_toolkit/ (unpublished)

  • Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21:70–83

    Article  CAS  PubMed  Google Scholar 

  • Hwang DW, Kim SG, Choi M, Lee IS, Kim SS, Choi HG (2016) Monitoring of trace metals in coastal sediments around Korean Peninsula. Mar Pollut Bull 102:230–239

    Article  CAS  PubMed  Google Scholar 

  • Keen AM (1969) Superfamily Veneracea. In: Moore RC (ed) Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Lawrence, pp 670–690

    Google Scholar 

  • Kim R-O, Kim B-M, Jeong C-B, Nelson DR, Lee J-S, Rhee J-S (2013) Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo[a]pyrene-exposed monogonont rotifer Brachionus koreanus. Environ Sci Technol 47:13804–13812

    Article  CAS  PubMed  Google Scholar 

  • Kim B-M, Kim K, Choi I-Y, Rhee J-S (2017) Transcriptome response of the Pacific oyster, Crassostrea gigas susceptible to thermal stress: a comparison with the response of tolerant oyster. Mol Cell Toxicol 13:105–113

    Article  CAS  Google Scholar 

  • Lim H-J, Kim B-M, Hwang IJ, Lee J-S, Choi I-Y, Kim Y-J, Rhee J-S (2016) Thermal stress induces a distinct transcriptome profile in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol D 19:62–70

    CAS  Google Scholar 

  • Livingstone D, Lips F, Martnez P, Pipe R (1992) Antioxidant enzymes in the digestive gland of the common mussel (Mytilus edulis L.). Mar Biol 112:265–276

    Article  CAS  Google Scholar 

  • Marigómez I, Baybay-Villacorta L (2003) Pollutant-specific and general lysosomal responses in digestive cells of mussels exposed to model organic chemicals. Aquat Toxicol 64:235–257

    Article  CAS  PubMed  Google Scholar 

  • Moreira R, Pereiro P, Canchaya C, Posada D, Figueras A, Novoa B (2015) RNA-Seq in Mytilus galloprovincialis: comparative transcriptomics and expression profiles among different tissues. BMC Genom 16:728

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Morton B (1971) The daily rhythm and the tidal rhythm of feeding and digesting in Ostrea edulis. Biol J Linn Soc 3:329–342

    Article  Google Scholar 

  • Owen G (1974) Feeding and digestion in the bivalvia. Adv Comp Physiol Biochem 5:1–35

    Article  CAS  PubMed  Google Scholar 

  • Ponte G, Modica MV (2017) Salivary glands in predatory mollusks: evolutionary considerations. Front Physiol 8:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venier P, Varotto L, Rosani U, Millino C, Celegato B, Bernante F, Lanfranchi G, Novoa B, Roch P, Figueras A et al (2011) Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genom 12:69

    Article  CAS  Google Scholar 

  • Yadetie F, Butcher S, Førde HE, Campsteijn C, Bouquet JM, Karlsen OA, Denoeud F, Metpally R, Thompson EM, Manak JR, Goksøyr A, Chourrout D (2012) Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics. BMC Genom 13:55

    Article  CAS  Google Scholar 

  • Zanette J, Jenny MJ, Goldstone JV, Parente T, Woodin BR, Bainy AC, Stegeman JJ (2013) Identification and expression of multiple CYP1-like and CYP3-like genes in the bivalve mollusk Mytilus edulis. Aquat Toxicol 128/129:101–112

    Article  CAS  Google Scholar 

  • Zhao X, Yu H, Kong L, Liu S, Li Q (2014) Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions. PLoS ONE 9:e111915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant, entitled “Polar genome 101 Project (PE18080)” funded by the Korea Polar Research Institute of South Korea and was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A06015181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Sick Lee, Jae-Sung Rhee or Hyun Park.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All animal handling and experimental procedures were approved by the Animal Welfare Ethical Committee and Animal Experimental Ethics Committee of Korea Polar Research Institute (KOPRI, Incheon, South Korea).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 4263 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BM., Ahn, DH., Kim, H. et al. Transcriptome profiling suggests roles of innate immunity and digestion metabolism in purplish Washington clam. Genes Genom 41, 183–191 (2019). https://doi.org/10.1007/s13258-018-0750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0750-9

Keywords

Navigation