Skip to main content
Log in

Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Antioxidant enzymes function to remove deleterious reactive oxygen species, including the superoxide anion radical and H2O2. Subcellular distributions and optimal and other properties of catalase (EC. 1.11.1.6), superoxide dismutase (SOD; EC. 1.15.1.1), selenium-dependent glutathione peroxidase (Se-GPX; EC. 1.11.1.9) and total glutathione peroxidase (GPX) activities were determined in the digestive gland of the common mussel Mytilus edulis L. by spectrophotometric and cytochemical/electron microscopic (catalase) techniques. Assay conditions for Se-GPX and total GPX activities were determined which optimized the difference between the non-enzymic and enzymic rates of reaction. General peroxidase activity (guaiacol as substrate) (EC. 1.11.1.7) was not detectable in any subcellular fraction. Catalase was largely, if not totally, peroxisomal, whereas SOD and GPX activities were mainly cytosolic. Distinct mitochondrial (Mn-SOD) and cytosolic (CuZn-SOD) SOD forms were indicated. Catalase properties were consistent with a catalase, rather than a catalase-peroxidase. The pH-dependence and temperature-dependence of GPX activity were different with H2O2 or CHP as substrate, and these and other observations indicate the existence of a distinct Se-GPX. Under saturating or optimal (GPX) assay conditions, the apparent Michaelis constants K m (m M) were: catalase, 48 to 68 (substrate, H2O2); Se-GPX, 0.11 (H2O2) and 2.0 (glutathione); and total GPX, 2.2 (eumene hydroperoxide) and 1.2 (glutathione). Calculated catalase activity was 2 to 4 orders of magnitude greater than Se-GPX activity over an [H2O2] of 1 to 1000 μ M. The results are discussed in relation to theoretical calculations of in vivo oxyradical production and phylogenetic differences in antioxidant enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase. In: Bergmeyer, H. U. (ed.) Methods in enzymatic analysis. Vol. II. Academic Press, New York, p. 673–683

    Google Scholar 

  • Ahmad, S., Beilstein, M. A., Pardini, R. S. (1989). Glutathione peroxidase activity in insects: a reassessment. Archs Insect Biochem. Physiol. 12: 31–49

    Article  CAS  Google Scholar 

  • Ahmad, S., Pritsos, C. A., Bowen, S. M., Heisler, C. R., Blomquist, G. J., Pardini, R. S. (1988). Subcellular distribution and activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the southern armyworm, Spodoptera eridania. Archs Insect Biochem. Physiol. 7: 173–186

    Article  CAS  Google Scholar 

  • Angermuller, S., Fahimi, H. D. (1981). Selective cytochemical localization of peroxidase, cytochrome oxidase and catalase in rat liver with 3,3′-diaminobenzidine. Histochemistry 71: 33–44

    Article  CAS  PubMed  Google Scholar 

  • Argese, E., Rigo, A., Viglino, P., Orsega, E., Marmocchi, F., Cocco, D., Rotilio, G. (1984). A study of the pH dependence of the activity of porcine Cu, Zn SOD. Biochim. biophys. Acta 787: 205–207

    Article  CAS  Google Scholar 

  • Aruoma, O.I., Halliwell, B., Hoey, B.M., Butler, J. (1988). The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J. 256: 251–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi, Y.C., Beutler, E., Srivastava, S.K. (1975). Purification and properties of human erythrocyte glutathione peroxidase. J. biol. Chem. 250: 5144–5149

    Article  CAS  PubMed  Google Scholar 

  • Barja de Quiroga, G., Gil, P., Alonso-Bedate, M. (1985). Catalase enzymatic activity and electrophoretic pattern in adult amphiblians—a a comparative study. Comp. Biochem. Physiol. 80B: 853–858

    CAS  Google Scholar 

  • Barja de Quiroga, G., Lopez-Torres, M., Gil, P. (1989a). Hyperoxia decreases lung size of amphibian tadpoles without changing GSH-peroxidases or tissue peroxidation. Comp. Biochem. Physiol. 92A: 581–588

    Article  CAS  Google Scholar 

  • Barja de Quiroga, G., Lopez-Torres, M., Perez-Campo, R. (1989b). Catalase is needed to avoid tissue peroxidation in Rana perezi in normoxia. Comp. Biochem. Physiol. 94C: 391–398

    CAS  Google Scholar 

  • Beloqui, O., Cederbaum, A.I. (1986). Prevention of microsomal production of hydroxyl radicals, but not lipid peroxidation, by the glutathione-glutathione peroxidase system. Biochem. Pharmac. 35: 2663–2669

    Article  CAS  Google Scholar 

  • Beyer, W.F., Jr., Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analyt. Biochem. 161: 559–566

    Article  CAS  PubMed  Google Scholar 

  • Bishop, S.H., Ellis, L.L., Burcham, J.M. (1983). Amino acid metabolism in molluscs. In: Wilbur, K.H. (ed.-in-chief). The Mollusca. Vol I. Hochachka, P.W. (ed.) Metabolic biochemistry and molecular biomechanics. Academic Press, New York, p. 243–327

    Chapter  Google Scholar 

  • Blum, D.C., Fridovich, I. (1984). Enzymatic defenses against oxygen toxicity in the hydrothermal vent animals Rifta pachyptila and Calyptogena magnifica. Archs Biochem. Biophys. 228: 617–620

    Article  CAS  Google Scholar 

  • Borg, D.C., Schaich, K.M. (1984). Cytotoxicity from coupled redox cycling of autoxidizing xenobiotics and metals. Israel J. Chem. 24: 38–53

    Article  CAS  Google Scholar 

  • Braddon-Galloway, S., Balthrop, J.E. (1985). Se-dependent GSH-peroxidase isolated from black sea bass (Centropristis striata). Comp. Biochem. Physiol. 82C: 297–300.

    CAS  Google Scholar 

  • Byczkowski, J.Z., Gessner, T. (1988). Biological role of superoxide ion-radical. Int. J. Biochem. 20: 569–580

    Article  CAS  PubMed  Google Scholar 

  • Cadenas, E., Mira, D., Brunmark, A., Lind, C., Segura-Aguilar, J., Ernster, L. (1988). Effect of superoxide dismutase of the autoxidation of various hydroquinones — a possible role of superoxide dismutases as a superoxide: semiquinone oxidoreductase. Free radical Biol. Med. 5: 71–79

    Article  CAS  Google Scholar 

  • Cand, F., Verdetti, J. (1989). Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats. Free radical Biol. Med. 7: 59–63

    Article  CAS  Google Scholar 

  • Claiborne, A. (1985). Catalase activity. In: Greenwald, R. A. (ed.) Handbook of methods of oxygen radical research. CRC Press, Boca Raton, Florida, p. 283–284

    Google Scholar 

  • De Groot, H., Littauer, H. (1989). Hypoxia, reactive oxygen, and cell injury. Free radical. Biol. Med. 6: 541–551

    Article  Google Scholar 

  • De Groot, H., Noll, T. (1987). The role of physiological oxygen partial pressures in lipid peroxidation. Theoretical considerations and experimental evidence. Chemy Phys Lipids. 44: 209–226

    Article  Google Scholar 

  • Di Giulio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W., Jewell, C.S. (1989). Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Envir. Toxic. Chem. 8: 1103–1123

    Article  Google Scholar 

  • Diguiseppi, J., Fridovich, I. (1984). The toxicology of molecular oxygen. CRC critical Rev. Toxic. 12: 315–342

    Article  CAS  Google Scholar 

  • Dykens, J.A., Shick, J.M. (1988). Relevance of purine catabolism to hypoxia and recovery in euryoxic and stenoxic marine invertebrates, particularly bivalve molluscs. Comp. Biochem. Physiol. 91C: 35–41

    CAS  Google Scholar 

  • Fielden, E.M., Roberts, P.B., Gray, R.C., Lowe, D.J., Mautner, G.N., Rotilio, G., Calabrese, L. (1974). The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Biochem. J. 139: 49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flohé, L. (1982). Glutathione peroxidase brought into focus. In: Pryor, W.A. (ed.) Free radicals in biology. Vol. V. Academic Press, New York, p. 223–277

    Chapter  Google Scholar 

  • Fridovich, I. (1976). Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In: Pryor, W.A. (ed.) Free radicals in biology. Vol. 1. Academic Press, New York, p. 239–277

    Chapter  Google Scholar 

  • Fridovich, I. (1982). Measuring the activity of superoxide dismutases: an embarrassment of riches. In: Oberley, L.W. (ed.) Superoxide dismutase. Vol I. CRC Press, Boca Raton, Florida. p. 69–77

    Google Scholar 

  • Fukumori, Y., Fujiwara, T., Okada-Takahashi, Y., Mukohata, Y., Yamanaka, T. (1985). Purification and properties of a peroxidase from Halobacterium halobium L-33. J. Biochem. Tokyo 98: 1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, I., Hochman, I. (1989). Three different types of catalases in Klebsiella pneumoniae. Archs Biochem. Biophys. 268: 124–128

    Article  CAS  Google Scholar 

  • Goldfarb, P., Spry, J.A., Dunn, D., Livingstone, D.R., Wiseman, A., Gibson, G.G. (1989). Detection of mRNA sequences homologous to the human glutathione peroxidase and rat cytochrome P-450IVA1 genes in Mytilus edulis. Mar. envirl Res. 28: 57–60

    Article  CAS  Google Scholar 

  • Goldstein, S., Michel, C., Bors, W., Saran, M., Czapski, G. (1988). A critical reevaluation of some assay methods for superoxide dismutase activity. Free radical Biol. Med. 4: 295–303

    Article  CAS  Google Scholar 

  • Günzler, W.A., Flohé, L. (1985). Glutathione peroxidase. In: Greenwald, R.A. (ed.) Handbook of methods for oxygen research. CRC Press, Boca Raton, Florida, p. 285–290

    Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C. (1986). Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archs Biochem. Biophys. 246: 501–514

    Article  CAS  Google Scholar 

  • Hamed, R.R. (1984). Characterization of catalase from Hyalomma dromedarii cuticle. Comp. Biochem. Physiol. 78B: 499–505

    CAS  Google Scholar 

  • Jamieson, D. (1989). Oxygen toxicity and reactive oxygen metabolites in mammals. Free radical Biol. Med. 7: 87–108

    Article  CAS  Google Scholar 

  • Jones, D.P., Aw, T.Y., Shan, X. (1989). Drug metabolism and toxicity during hypoxia. Drug Metab. Rev. 20: 247–260

    Article  CAS  PubMed  Google Scholar 

  • Klug, D., Rabani, J., Fridovich, I. (1972). A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J. biol. Chem. 247: 4839–4842

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, R.A., Burk, R.F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. biophys. Res. Commun. 71: 952–958

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, D.R. (1991). Organic xenobiotic metabolism in marine invertebrates. Adv. comp. envir. Physiol. 7: 45–185

    Article  CAS  Google Scholar 

  • Livingstone, D.R., Clarke, K.R. (1983). Seasonal changes in hexokinase from the mantle tissue of the common mussel, Mytilus edulis L. Comp. Biochem. Physiol. 74B: 691–702

    CAS  Google Scholar 

  • Livingstone, D.R., Farrar, S.V. (1984). Tissue and subcellular distribution of enzyme activities of mixed-function oxygenase and benzo[a]pyrene metabolism in the common mussel, Mytilus edulis L. Sci. total Envir. 39: 209–235

    Article  CAS  Google Scholar 

  • Livingstone, D.R., Garcia Martinez, P., Michel, X., Narbonne, J.F., O'Hara, S.C.M., Ribera, S.D., Winston, G.W. (1990). Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel, Mytilus edulis L., and other molluscs. Funct. Ecol. 4: 415–424

    Article  Google Scholar 

  • Livingstone, D.R., Garcia Martinez, P., Winston, G.W. (1989a). Menadione-stimulated oxyradical formation in digestive gland microsomes of the common mussel, Mytilus edulis L. Aquat. Toxic. 15: 213–236

    Article  CAS  Google Scholar 

  • Livingstone, D.R., Kirchlin, M.A., Wiseman, A. (1989b). Cytochrome P-450 and oxidative metabolism in molluscs. Xenobiotica 19: 1041–1062

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275

    Article  CAS  PubMed  Google Scholar 

  • Makary, M., Kim, H.L., Safe, S., Womack, J., Ivie, G.W. (1988). Constitutive and Aroclor 1254-induced hepatic glutathionc S-transferase, peroxidase and reductase activities in genetically inbred mice. Comp. Biochem. Physiol. 91C: 425–429

    CAS  Google Scholar 

  • Malik, Z., Jones, C.J.P., Connock, M.J. (1987). Assay and subcellular localization of H2O2 generating mannitol oxidase in the terrestrial slug Arion ater. J. exp. Zool. 242: 9–15

    Article  CAS  Google Scholar 

  • Mann, V., Large, A., Khan, S., Malik, Z., Connock, MJ. (1989) Aromatic alcohol oxidase: a new membrane-bound H2O2-generating enzyme in alimentary tissues of the slug Arion ater. J. exp. Zool. 251: 265–274

    Article  CAS  Google Scholar 

  • Marx, J.L. (1987). Oxygen free radicals linked to many diseases. Science, N.Y. 235: 529–531

    Article  CAS  Google Scholar 

  • McCord, J.M., Fridovich, I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. biol. Chem. 244: 6049–6055

    Article  CAS  PubMed  Google Scholar 

  • Michiels, C., Remacle, J. (1988). Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. Eur. J. Biochem. 177: 435–441

    Article  CAS  PubMed  Google Scholar 

  • Morrill, A.C., Powell, E.N., Bidigare, R.R., Shick, J.M. (1988). Adaptations to life in the sulfide system: a comparison of oxygen detoxifying enzymes in thiobiotic and oxybiotic meiofauna (and freshwater planarians). J. comp. Physiol. (Sect. B) 158: 335–344

    Article  CAS  Google Scholar 

  • Munday, R., Winterbourn, C.C. (1989). Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism. Biochem. Pharmac. 38: 4349–4352

    Article  CAS  Google Scholar 

  • Owen, G. (1972). Lysosomes, peroxisomes and bivalves. Scient. Prog. Oxf. 60: 299–318

    CAS  Google Scholar 

  • Paglia, D.E., Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. clin. Med. 70: 158–169

    CAS  PubMed  Google Scholar 

  • Pelletier, E. (1988). Acute toxicity of some methylmercury comples to Mytilus edulis and lack of selenium protection. Mar. Pollut. Bull. 19: 213–219

    Article  CAS  Google Scholar 

  • Powell, E.N., Morrill, A.C., Bidigaire, R.R. (1989). Catalase in sulfide- and methane-dependent macrofauna from petroleum seeps. Experientia 45: 198–200

    Article  CAS  Google Scholar 

  • Pritsos, C.A., Ahmad, S., Elliott, A.J., Pardini, R.S. (1990). Antioxidant enzyme level response to prooxidant allelochemicals in larvae of the southern armyworm moth, Spodoptera eridania. Free radical Res. Commun. 9: 127–133

    Article  CAS  Google Scholar 

  • Putter, J. (1984). Peroxidases. In: Bergmeyer, H.U. (ed.) Methods of enzymatic analysis. Vol. 2. Academic Press, New York, p. 685–690

    Google Scholar 

  • Roberts, M.H., Sved D.W., Felton, S.P. (1987). Temporal changes in AHH and SOD activities in feral spot from the Elizabeth river, a polluted sub-estuary. Mar. envirl Res. 23: 89–101

    Article  CAS  Google Scholar 

  • Roels, F., Geerts, A., De Coster, W., Goldfischer, S. (1982). Cytoplasmic catalase: cytochemistry and physiology. Ann. N.Y. Acad. Sci. 386: 534–536

    Article  CAS  Google Scholar 

  • Salin, M.L., Day, E.D., Crapo, J.D. (1978). Isolation and charactezation of a manganese-containing superoxide dismutase from rat liver. Archs Biochem. Biophys. 187: 223–228

    Article  CAS  Google Scholar 

  • Sanchez-Moreno, M., Garcia-Ruiz, M.A., Monteolivia, M. (1989). Physico-chemical characteristics of superoxide dismutase in Ascaris suum. Comp. Biochem. Physiol. 92B: 737–740

    CAS  Google Scholar 

  • Shick, J.M., Dykens, J.A. (1985). Oxygen detoxification in algal-invertebrate symbioses from the Great Barrier Reef. Oecologia 66: 33–41

    Article  CAS  PubMed  Google Scholar 

  • Simmons, T.W., Jamall, I.S. (1988). Significance of alterations in hepatic antioxidant enzymes. Biochem. J. 251: 913–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, J., Shrift, A. (1979). Phylogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 63B: 39–44

    CAS  Google Scholar 

  • Steinman, H.M. (1982). Superoxide dismutases: protein chemistry and structure-function relationships. In: Oberley, L.W. (ed.) Superoxide dismutase. Vol I. CRC Press Inc., Boca Raton, Florida, p. 11–68

    Google Scholar 

  • Susani, M., Zimniak, P., Fessl, F., Ruis, H. (1976). Localization of catalase A in vacuoles of Saccharomyces cerevisiae: evidence for the vacuolar nature of isolated “yeast peroxisomes”. Hoppe-Seyler's Z. physiol. Chem. 357: 961–970

    Article  CAS  Google Scholar 

  • Takahashi, K., Avissar, N., Whitin, J., Cohen, H. (1987). Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Archs Biochem. Biophys. 256: 677–686

    Article  CAS  Google Scholar 

  • Tappel, M.E., Chaudiere, J, Tappel., A.L. (1982). Glutathione peroxidase activities of animal tissues. Comp. Biochem. Physiol. 73B: 945–949

    CAS  Google Scholar 

  • Tribble, D.L., Jones, D.P. (1990). Oxygen depedence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. Biochem. Pharmac. 39: 729–736

    Article  CAS  Google Scholar 

  • Turner, E., Hager, L.J., Shapiro, B.M. (1988). Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs. Science, N.Y. 242: 939–941

    Article  CAS  Google Scholar 

  • Ursini, F., Bindoli, A. (1987). The role of selenium peroxidases in the protection against oxidative damage of membranes. Chemy Phys. Lipids 44: 255–276

    Article  CAS  Google Scholar 

  • Vandewalle, P.L., Petersen, N.O. (1987). Oxidation of reduced cytochrome c by hydrogen peroxide. Implications for superoxide assays. Fedn eur. biochem. Soc. (FEBS) Lett. 210: 195–198

    Article  CAS  Google Scholar 

  • Vuillaume, M. (1987). Reduced oxygen species, mutation, induction and cancer initiation. Mutation Res. 186: 43–72

    Article  CAS  PubMed  Google Scholar 

  • Wenning R.J.. Di Giulio, R.T. (1988). Microsomal enzyme activities, superoxide production, and antioxidant defenses in ribbed mussels (Geukensia demissa) and wedge clams (Rangia cuneata). Comp. Biochem. Physiol. 90C: 21–28

    CAS  Google Scholar 

  • Winston, G.W. (1991). Oxidants and antioxidants in aquatic animals. Comp. Biochem. Physiol. 100C: 173–176

    CAS  Google Scholar 

  • Winston, G.W., Di Giulio, R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxic. 19: 137–161

    Article  CAS  Google Scholar 

  • Winston, G.W., Livingstone, D.R., Lips, F. (1990). Oxygen reduction metabolism by the digestive gland of the common marine mussel, Mytilus edulis L. J. exp. Zool. 255: 296–308

    Article  CAS  Google Scholar 

  • Yokota, S. (1970). Comparative studies on the ultrastructure of hepatic microbodies. I. Hepatopancreatic microbodies of the marine Mollusca and Crustacea. Zool. Mag., Tokyo 79: 296–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingstone, D.R., Lips, F., Martinez, P.G. et al. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis . Mar. Biol. 112, 265–276 (1992). https://doi.org/10.1007/BF00702471

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702471

Keywords

Navigation