Skip to main content
Log in

Transcriptome analysis reveals critical genes and key pathways involved in early phyllotaxy development in maize

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Integrated networks of gene expression, hormonal signaling and metabolite sensing regulate phyllotaxy pattern development. In this study, we characterized differentially expressed genes (DEGs) between maize plants with alternate and opposite phyllotaxies. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that 2432 DEGs were involved in biological processes, molecular functions, cellular components and many pathways. Importantly, we identified 19 DEGs related to plant hormone signal transduction. Additionally, we identified four main alternative splicing types: skipped exons, retained introns, alternative 5′-splice sites, and alternative 3′-splice sites, which exhibited different characteristics in the alternate and opposite phyllotaxy libraries. The reliability of the sequencing data was verified through using quantitative real-time reverse transcription PCR analysis of the 19 genes: 15 were validated to play a role in phytohormone signal transduction pathways. Taken together, our data provide new insight into the mechanisms of phyllotaxy pattern development, and will increase our understanding of how relative changes in gene expression determine alternate/opposite phyllotaxy in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai F, Reinheimer R, Durantini D, Kellogg EA, Schmidt RJ (2012) TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Proc Natl Acad Sci USA 109:12225–12230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbazuk WB, Fu Y, Mcginnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Ann Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

  • Bommert P, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569

    Article  Google Scholar 

  • Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    Article  CAS  PubMed  Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Itoh JI, Kitano H, Matsuoka M, Nagato Y (2000) SHOOT ORGANIZATION genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12:2161–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh JI, Hibara KI, Kojima M, Sakakibara H, Nagato Y (2012) Rice DECUSSATE controls phyllotaxy by affecting the cytokinin signaling pathway. Plant J 72:869–881

    Article  CAS  PubMed  Google Scholar 

  • Jackson D, Hake S (1999) Control of phyllotaxy in maize by the abphyl1 gene. Development 126:315–323

    CAS  PubMed  Google Scholar 

  • Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol 160:846–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalsotra A, Cooper TA (2011) Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 12:715–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Kim S, Ha YM, Kim J (2008) Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. Planta 227:577–587

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Yu SI, Jackson D (2009a) Control of plant architecture: the role of phyllotaxy and plastochron. J Plant Biol 52:277–282

    Article  CAS  Google Scholar 

  • Lee BH, Johnston R, Yang Y, Gallavotti A, Kojima M, Travencolo BAN, Costa LD, Sakakibara H, Jackson D (2009b) Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol 150:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Swanson RV, Simon MI, Weis RM (1995) The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 34:14626–14636

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR et al (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Lu XD, Chen DJ, Shu DF, Zhang Z, Wang WX, Klukas C, Chen LL, Fan YL, Chen M, Zhang CY (2013) The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol 162:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mustilli AC, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai K, Sakamoto H (1994) Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141:171–177

    Article  CAS  PubMed  Google Scholar 

  • Pautler M, Tanaka W, Hirano HY, Jackson D (2013) Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition. Plant Cell Physiol 54:302–312

    Article  CAS  PubMed  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

    Article  CAS  PubMed  Google Scholar 

  • Sourjik V, Schmitt R (1998) Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:2327–2335

    Article  CAS  PubMed  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960

    Article  CAS  PubMed  Google Scholar 

  • Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Gene Dev 15:2755–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan YQ, Xie CX, Jiang HY, Ye H, Xiang Y, Zhu SW, Cheng BJ (2010) Molecular mapping of genes for opposite leafing in maize using simple-sequence repeat markers. Genet Mol Res 10:3472–3479

    Article  Google Scholar 

  • Tanaka W, Pautler M, Jackson D, Hirano HY (2013) Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol 54:313–324

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41

    Article  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103:7175–7180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BB, O’Toole M, Brendel V, Young ND (2008a) Cross-species EST alignments reveal novel and conserved alternative splicing events in legumes. BMC Plant Biol 8:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008b) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma J, Cheng J, Han Y (2013) Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol Biol 83:365–377

    Article  CAS  PubMed  Google Scholar 

  • Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, Zhang Y, Chen D, Dai G, Yang Z et al (2013) Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genom 14:19

    Article  CAS  Google Scholar 

  • Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan MA, Zhou Y et al (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genom 13:537

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Key Laboratory of Crop Biology of Anhui province for their assistance in this study. This work was supported by the Natural Science Foundation of China (11075001, 31000871) and the Scientific and Technological Research Plan of Anhui (11010301026). We extend our thanks to the reviewers for their careful reading and helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao.

Ethics declarations

Conflict of interest

Xiaojian Peng, Wenbo Chai, Yingquan Tan, Qing Dong, Haiyang Jiang, Beijiu Cheng and Yang Zhao declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human subjects or animals performed by any of the authors.

Additional information

Xiaojian Peng and Wenbo Chai have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Chai, W., Tan, Y. et al. Transcriptome analysis reveals critical genes and key pathways involved in early phyllotaxy development in maize. Genes Genom 39, 15–26 (2017). https://doi.org/10.1007/s13258-016-0478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0478-3

Keywords

Navigation