Skip to main content
Log in

Genome-wide analysis and environmental response profiling of SOT family genes in rice (Oryza sativa)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Sulphotransferase (SOT) catalyses the transfer of a sulphonate group from 3′-phosphoadenosine 5′-phosphosulphate (PAPS) to an appropriate hydroxyl group of various substrates with the parallel formation of 3′-phosphoadenosine 5′-phosphate (PAP). Although several SOTs have been identified and characterized in mammalian, their role in plant is still unclear. In this study, we report genome-wide comprehensive expression analysis of 35 putative SOT genes in rice. The 35 OsSOTs were tandemly arranged into six clusters. The phylogenetic analysis showed that there were 7 subfamilies of OsSOTs and 11 putatively conserved motifs. Six OsSOTs might be pseudogenes, 25 have the two motifs which were involved in PAPS binding regions I and IV. Microarray data indicated that all the OsSOTs were expressed almost at the same level but with different patterns: most OsSOTs were expressed exclusively in stigma and ovary and induced by IAA and BAP, several genes were induced by tZ and DMSO and 11 OsSOTs were response to abiotic stress. Further analysis showed that these 11 genes contained cis-regulatory elements responding to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananvoranich S, Varin L, Gulick P and Ibrahim R (1994) Cloning and regulation of flavonol 3-sulfotransferase in cell-suspension cultures of Flaveria bidentis. Plant Physiol. 106: 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A, Hirai MY, Saito K, Pare PW and Shi H (2010) A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant, Cell Environ. 33: 1383–1392.

    CAS  Google Scholar 

  • Bauer M, Dietrich C, Nowak K, Sierralta WD and Papenbrock J (2004) Intracellular localization of Arabidopsis sulfurtransferases. Plant Physiol. 135: 916–926.

    Article  PubMed  CAS  Google Scholar 

  • Cinta HS (2008) Sulfotransferases from Plants, Algae and Phototrophic Bacteria. Sulfur Metabolism in Phototrophic Organisms, Cinta HS and Luc V, eds., Academic Press, Montreal, CA, pp. 111–130.

    Google Scholar 

  • Faulkner I and Rubery P (1992) Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyls segments and vesicles. Planta 186: 618–625.

    Article  CAS  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM and Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32: W273–W279.

    Article  PubMed  CAS  Google Scholar 

  • Gidda S and Varin L (2006) Biochemical and molecular characterization of a flavonoid 7-sulfotransferase from Arabidopsis athaliana. Plant Physiol. Bioch. 44: 628–636.

    Article  CAS  Google Scholar 

  • Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C and Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J. Biol. Chem. 278: 17895–17900.

    Article  PubMed  CAS  Google Scholar 

  • Hempel F, Bozarth A, Sommer MS, Zauner S, Przyborski JM and Maier UG (2007) Transport of nuclear-encoded proteins into secondarily evolved plastids. Biol. Chem. 388: 899–906.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs M and Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Klein M and Papenbrock J (2004) The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J. Exp. Bot. 55: 1809–1821.

    Article  PubMed  CAS  Google Scholar 

  • Klein M (2008) Sulfotransferases and Their Role in Glucosinolate Biosynthesis. Sulfur Assimilation and Abiotic Stress in Plants, Klein M and Papenbrock J, eds., Academic Press, Hannover, CA, pp. 149–166.

    Chapter  Google Scholar 

  • Klein M, Reichelt M, Gershenzon J and Papenbrock J (2006) The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS J. 273: 122–136.

    Article  PubMed  CAS  Google Scholar 

  • Lacomme C and Roby D (1996) Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. Plant Mol. Biol. 30: 995–1008.

    Article  PubMed  CAS  Google Scholar 

  • Marsolais F, Boyd J, Paredes Y, Schinas AM, Garcia M, Elzein S and Varin L (2007) Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225: 1233–1244.

    Article  PubMed  CAS  Google Scholar 

  • Marsolais F (2000) Chapter Fourteen Plant soluble sulfotransferases: Structural and functional similarity with mammalian enzymes. Recent Adv Phytochem, Marsolais F, Gidda SK, Boyd J and Varin L, eds., Academic Press, Quebec, CA, pp. 433–456

    Google Scholar 

  • Marsolais F, Sebastia CH, Rousseau A and Varin L (2004) Molecular and biochemical characterization of BNST4, an ethanol-inducible steroid sulfotransferase from Brassica napus, and regulation of BNST genes by chemical stress and during development. Plant Sci. 166: 1359–1370.

    Article  CAS  Google Scholar 

  • Nakamura Y, Mithfer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, Tohma K and Ueda M (2011) 12-Hydroxyjasmonic Acid Glucoside Is a COI1-JAZ-Independent Activator of Leaf-Closing Movement in Samanea saman. Plant Physiol. 155: 1226–1236.

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW and Meyers BC (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res. 34: D731–735.

    Article  PubMed  CAS  Google Scholar 

  • Nowak K, Luniak N, Meyer S, Schulze J, Mendel R and Hnsch R (2004) Fluorescent proteins in poplar: a useful tool to study promoter function and protein localization. Plant Biol. 6: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Nowell S and Falany C (2006) Pharmacogenetics of human cytosolic sulfotransferases. Oncogene 25: 1673–1678.

    Article  PubMed  CAS  Google Scholar 

  • Piotrowski M, Schemenewitz A, Lopukhina A, Müller A, Janowitz T, Weiler EW and Oecking C (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem. 279: 50717–50725.

    Article  PubMed  CAS  Google Scholar 

  • Rouleau M, Marsolais F, Richard M, Nicolle L, Voigt B, Adam G and Varin L (1999) Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J. Biol. Chem. 274: 20925–20930.

    Article  PubMed  CAS  Google Scholar 

  • Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T and Thiagarajan M (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34: 374–378.

    PubMed  CAS  Google Scholar 

  • Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K and Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13: 612–620.

    Article  PubMed  CAS  Google Scholar 

  • Varin L, Chamberland H, Lafontaine JG and Richard M (1997) The enzyme involved in sulfation of the turgorin, gallic acid acid 4-O-(β-D-glucopyranosyl-6′-sulfate) is pulvinilocalized in Mimosa pudica. Plant J. 12: 831–837.

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J and Cui X (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 139: 822–835.

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Matsubayashi Y, Nakamura K and Sakagami Y (1999) Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants. Proc. Natl. Acad. Sci. USA 96: 13560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjun Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Jiang, Y., Dong, J. et al. Genome-wide analysis and environmental response profiling of SOT family genes in rice (Oryza sativa). Genes Genom 34, 549–560 (2012). https://doi.org/10.1007/s13258-012-0053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-012-0053-5

Keywords

Navigation