Skip to main content
Log in

Genome-wide Identification, Expression Profiling and Promoter Analysis of Trehalose-6-Phosphate Phosphatase Gene Family in Rice

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Trehalose-6-phosphate phosphatase (TPP) plays a key role in trehalose metabolism in plants. Here, we performed comprehensive in silico analyses and identified 12 OsTPPs (Oryza sativa TPPs) utilizing various bioinformatics tools. Phylogenetic tree, accomplished with OsTPPs and TPPs from 11 monocot and dicot species, was divided mainly into two clades, each clade containing six OsTPPs. Exon–intron distribution was related to phylogenetic clades. All OsTPPs are distributed within nine chromosomes (chr.), except Chr. 1, Chr. 5 and Chr. 11. OsTPPs were found to be stable in nature according to the 3-D structure prediction. Cis-regulatory elements (CREs) were also analyzed using 2 kb upstream of start codon for each gene to predict their biological functions. We categorized all CREs in five distinct groups based on core elements, stress response, cellular development, hormonal regulation, and unknown function, distributed in a range of 3–14 CREs in each group. Interestingly, our expression analysis showed that OsTPPs were more upregulated in response to drought and cold stresses compared to salt stress. Abundance of stress-related CREs found signifies TPPs’ possible role in stress response, which may facilitate to find related transcription factors and unveil complex molecular mechanisms during stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Pérez P, Camacho-Zamora BD, Espinoza-Sánchez EA, Gutiérrez-Soto G, Zavala-García F, Abraham-Juárez MJ, Sinagawa-García SR (2020) Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress. Plants 9:315

    PubMed Central  Google Scholar 

  • Albini FM, Murelli C, Patritti G, Rovati M, Zienna P, Finzi PV (1994) Low-molecular weight substances from the resurrection plant Sporobolus stapfianus. Phytochemistry 37:137–142

    CAS  Google Scholar 

  • Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin WL, DeJesus-Hernandez M, Van Blitterswijk MM, Jansen-West K, Paul JW, Rademakers R, Boylan KB, Dickson DW, Petrucelli L (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriag G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertini G, Gray H, Gray HB, Stiefel E, Valentine JS, Stiefel EI (2007) Biological inorganic chemistry: structure and reactivity. Choice Rev Online Univ Sci Books 9:176–177

    Google Scholar 

  • Bhattacharya M, Hota A, Kar A, Sankar Chini D, Chandra Malick R, Chandra Patra B, Kumar Das B (2018) In silico structural and functional modelling of antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). J Genet Eng Biotechnol 16:721–730

    PubMed  PubMed Central  Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359

    PubMed  Google Scholar 

  • Blázquez MA, Santos E, Flores CL, Martínez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13:685–689

    PubMed  Google Scholar 

  • Bordoli L, Schwede T (2012) Automated protein structure modeling with swiss-model workspace and the protein model portal. Methods Mol Biol 857:107–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chak RK, Thomas TL, Quatrano RS, Rock CD (2000) The genes ABI1 and ABI2 are involved in abscisic acid-and drought-inducible expression of the Daucus carota L. Dc3 promoter in guard cells of transgenic Arabidopsis thaliana (L.) Heynh. Planta 210:875–883

    CAS  PubMed  Google Scholar 

  • Chen S, Zhao H, Luo T, Liu Y, Nie X, Li H (2019) Characteristics and expression pattern of MYC Genes in Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Plants 8:274

    CAS  PubMed Central  Google Scholar 

  • Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    CAS  PubMed  Google Scholar 

  • Claeys H, Vi SL, Xu X, Satoh-Nagasawa N, Eveland AL, Goldshmidt A, Feil R, Beggs GA, Sakai H, Brennan RG, Lunn JE, Jackson D (2019) Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity. Nat Plants 5:352–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150

    CAS  PubMed  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    CAS  Google Scholar 

  • Cowan JA (1998) Metal activation of enzymes in nucleic acid biochemistry. Chem Rev 98:1067–1088

    CAS  PubMed  Google Scholar 

  • Dhatterwal P, Basu S, Mehrotra S, Mehrotra R (2019) Genome wide analysis of W-box element in Arabidopsis thaliana reveals TGAC motif with genes down regulated by heat and salinity. Sci Rep 9:1–8

    CAS  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius welw. J Plant Physiol 142:493–496

    CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    CAS  PubMed  Google Scholar 

  • Farías-Rodríguez R, Mellor RB, Arias C, Peña-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Physiol Plant 102:353–359

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783

    PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    CAS  PubMed  Google Scholar 

  • Fu Y, Zhang Z, Liu J, Chen M, Pan R, Hu W, Guan Y, Hu J (2020) Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. J Plant Growth Regul 39:669–679

    CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    CAS  PubMed  Google Scholar 

  • Godbey WT (2014) Locating transcriptional control regions: deletion analysis. In: Godbey WT (ed) An introduction to biotechnology. Elsevier, Waltham, pp 187–191

    Google Scholar 

  • Grace ML, Chandrasekharan MB, Hall TC, Crowe AJ (2004) Sequence and spacing of TATA box elements are critical for accurate initiation from the β-Phaseolin promoter. J Biol Chem 279:8102–8110

    CAS  PubMed  Google Scholar 

  • Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19:256–262

    CAS  PubMed  Google Scholar 

  • Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271

    CAS  PubMed  Google Scholar 

  • Hattori T, Terada T, Hamasuna S (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J 7:913–925

    CAS  PubMed  Google Scholar 

  • Henry C, Bledsoe SW, Siekman A, Kollman A, Waters BM, Feil R, Stitt M, Lagrimini LM (2014) The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness. J Exp Bot 65:5959–5973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    CAS  PubMed  Google Scholar 

  • Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689

    CAS  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:1–5

    Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Huang H, Xie S, Xiao Q, Wei B, Zheng L, Wang Y, Cao Y, Zhang X, Long T, Li Y, Hu Y (2016) Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Sci Rep 6:27590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487

    PubMed  Google Scholar 

  • Ijaz U (2020) Plant Cis-regulatory elements: methods of identification and applications. Asian J Agric Biol 8:207–222

    Google Scholar 

  • Ishikawa K, Yoshimura K, Ogawa T, Shigeoka S (2010) Distinct regulation of arabidopsis ADP-ribose/NADH pyrophosphohydrolases, AtNUDX6 and 7, in biotic and abiotic stress responses. Plant Signal Behav 5:839–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa T, Foster R, Chua NH (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230:1131–1144

    CAS  PubMed  Google Scholar 

  • Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1:95–99

    Google Scholar 

  • Izidoro SC, De Melo-Minardi RC, Pappa GL (2015) GASS: identifying enzyme active sites with genetic algorithms. Bioinformatics 31:864–870

    CAS  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophysic Res Commun 345:646–651

    CAS  Google Scholar 

  • Jiang D, Chen W, Gao J, Yang F, Zhuang C (2019) Overexpression of the trehalose-6-phosphate phosphatase OsTPP3 increases drought tolerance in rice. Plant Biotechnol Rep 13:285–292

    Google Scholar 

  • Jiang P, Rausher M (2018) Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. Nat Plants 4:14–22

    CAS  PubMed  Google Scholar 

  • Jiu S, Haider MS, Kurjogi MM, Zhang K, Zhu X, Fang J (2018) Genome-wide characterization and expression analysis of sugar transporter family genes in woodland strawberry. Plant Genome 11:1–16

    Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282

    CAS  Google Scholar 

  • Jun SS, Yang JY, Choi HJ, Kim NR, Park MC, Hong YN (2005) Altered physiology in trehalose-producing transgenic tobacco plants: enhanced tolerance to drought and salinity stresses. J Plant Biol 48:456–466

    CAS  Google Scholar 

  • Kataya ARA, Elshobaky A, Heidari B, Dugassa NF, Thelen JJ, Lillo C (2020) Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development. Planta 251:1–4

    Google Scholar 

  • Kim JY (2013) Identification and functional analysis of S-adenosylmethionine synthetase (HvSAMS) genes in early maturing barley (Hordeum vulgare subsp. vulgare). Plant Breed Biotechnol 1:178–195

    Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    CAS  PubMed  Google Scholar 

  • Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, Li D (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics 14:1–14

    Google Scholar 

  • Krasensky J, Broyart C, Rabanal FA, Jonak C (2014) The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxidants Redox Signal 21:1289–1304

    CAS  Google Scholar 

  • Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM, Mackill DJ, Septiningsih EM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:1–5

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Biol 49:199–222

    CAS  Google Scholar 

  • Lin Q, Yang J, Wang Q, Zhu H, Chen Z, Dao Y, Wang K (2019) Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biol 19:381

    PubMed  PubMed Central  Google Scholar 

  • Lin Q, Wang S, Dao Y, Wang J, Wang K (2020) Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. J Exp Bot 71:4285–4297

    CAS  PubMed  Google Scholar 

  • Łopienska-Biernat E, Stryinski R, Dmitryjuk M, Wasilewska B (2019) Infective larvae of Anisakis simplex (Nematoda) accumulate trehalose and glycogen in response to starvation and temperature stress. Biol Open 8:bio040014

    PubMed  PubMed Central  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB, De Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins Struct Funct Genet 50:437–450

    CAS  PubMed  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    CAS  PubMed  Google Scholar 

  • Marcotte WR, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1:969–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda JA, Avonce N, Suárez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    CAS  PubMed  Google Scholar 

  • Moraes JPA, Pappa GL, Pires DEV, Izidoro SC (2017) GASS-WEB: a web server for identifying enzyme active sites based on genetic algorithms. Nucleic Acids Res 45:W315–W319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Aeschbacher RA, Sprenger N, Boller T, Wiemken A (2000) Disaccharide-mediated regulation of sucrose:fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves. Plant Physiol 123:265–273

    PubMed  PubMed Central  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    CAS  PubMed  Google Scholar 

  • Nei M, Saitou N (1987) T The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  Google Scholar 

  • NetBeans (2015) NetBeans IDE 1–3

  • Neto GC, Yunes JA, da Silva MJ, Vettore AL, Arruda P, Leite A (1995) The involvement of Opaque 2 on β-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator. Plant mol biol 27:1015–1029

    Google Scholar 

  • Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J, Krause KP, Goddijn O, Paul MJ (2004) Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnol J 2:71–82

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, Van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532

    CAS  Google Scholar 

  • Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2:70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    CAS  Google Scholar 

  • Qu J, Xu S, Tian X, Li T, Wang L, Zhong Y, Xue J, Guo D (2019) Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ 7:e7528

    PubMed  PubMed Central  Google Scholar 

  • Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19:271–273

    CAS  PubMed  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4:689–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Zhang P, Ho TH (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Sun H, Wang X, Jin W, Chen Q, Yuan Z, Yu H (2019) Physiological and transcriptomic analyses reveal the molecular networks of responses induced by exogenous trehalose in plant. PLoS ONE 14:e0217204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JS, Seo JS, Seo JS, Kim Y, Koo Y, Do Choi Y, Jung C (2019) Heterologous expression of bacterial trehalose biosynthetic genes enhances trehalose accumulation in potato plants without adverse growth effects. Plant Biotechnol Rep 13:409–418

    Google Scholar 

  • Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201

    CAS  PubMed  Google Scholar 

  • Sievers F, Higgins DG (2014) Clustal omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116

    CAS  PubMed  Google Scholar 

  • Singh A, Singh PK, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR (2019) Understanding the role of the WRKY gene family under stress conditions in pigeonpea (Cajanus cajan l.). Plants 8:214

    CAS  PubMed Central  Google Scholar 

  • Streeter JG, Gomez ML (2006) Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules. Appl Environ Microbiol 72:4250–4255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966

    PubMed  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thibaud-Nissen F, Ouyang S, Buell CR (2009) Identification and characterization of pseudogenes in the rice gene complement. BMC Genomics 10:317

    PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13:673–683

    CAS  PubMed  Google Scholar 

  • Wagner W, Wiemken A, Matile P (1986) Regulation of fructan metabolism in leaves of barley ( Hordeum vulgare L. cv Gerbel). Plant Physiol 81:444–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Ouyang K, Wang K (2019) Genome-wide identification, evolution, and expression analysis of TPS and TPP gene families in Brachypodium distachyon. Plants 8:362

    CAS  PubMed Central  Google Scholar 

  • Wang W, Chen Q, Xu S, Liu WC, Zhu X, Song CP (2020) Trehalose-6-phosphate phosphatase E modulates ABA-controlled root growth and stomatal movement in Arabidopsis. J Integr Plant Biol. https://doi.org/10.1111/jipb.12925

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Cheng MN, Ba LJ, Zeng RX, Luo DL, Qin YH, Liu ZL, Kuang JF, Lu WJ, Chen JY, Su XG, Shan W (2019) Pitaya HpWRKY3 is associated with fruit sugar accumulation by transcriptionally modulating sucrose metabolic genes HpINV2 and HpSuSy1. Int J Mol Sci 20:1890

    CAS  PubMed Central  Google Scholar 

  • Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA (2000) Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol 124:105–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    CAS  PubMed  Google Scholar 

  • Wu A, Hao P, Wei H, Sun H, Cheng S, Chen P, Ma Q, Gu JL, Zhang M, Wang H, Yu S (2019) Genome-wide identification and characterization of glycosyltransferase family 47 in cotton. Front Genet 10:824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Su X (2016) Identification of drought response genes in Zygophyllum xanthoxylum by suppression subtractive hybridization. J Plant Biol 59:377–385

    CAS  Google Scholar 

  • Xie J, Li Y, Liu X, Zhao Y, Li B, Ingvarsson PK, Zhanga D (2019) Evolutionary origins of pseudogenes and their association with regulatory sequences in plants. Plant Cell 31:563–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    CAS  PubMed  Google Scholar 

  • Yaqoob U, Kaul T, Nawchoo IA (2016) In-silico analysis, structural modelling and phylogenetic analysis of acetohydroxyacid synthase gene of Oryza sativa. Med Aromat Plants 5:1000272

    Google Scholar 

  • Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y (2017) OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev Cell 43:731–743

    CAS  PubMed  Google Scholar 

  • Zhou D, Shen Y, Zhou P, Fatima M, Lin J, Yue J, Zhang X, Chen LY, Ming R (2019) Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. Hortic Res 6:1–3

    Google Scholar 

  • Zhou S, Zhang H, Li R, Hong Q, Li Y, Xia Q, Zhang W (2017) Function identification of the nucleotides in key cis-element of Dysfunctional Tapetum1 (DYT1) promoter. Front Plant Sci 8:153

    PubMed  PubMed Central  Google Scholar 

  • Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu SH (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:14992–14997

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Next Generation BioGreen 21 program (PJ013138), Rural Development Administration, and the Brain Pool Program (2019H1D3A2A01102257) and the Basic Research Lab program (Project No. 2018R1A4A1025158), National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Contributions

JJ conceived and designed the experiments. MR, MR, and JE performed the experiments and analyzed the data. MR, MR, JE, and JJ wrote the paper.

Corresponding author

Correspondence to Jong-Seong Jeon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Supplementary Fig. 1. General information of cis-regulatory elements. (A) Histogram representing the frequencies of different sequence lengths of Cis-Regulatory Elements (CREs) in all OsTPP promoters. (B) Histogram showing frequencies of CREs identified using PlantCARE in positive and negative strands of OsTPPs. (C) Pie chart depicting the distribution of identified motifs in CREs of OsTPPs, based on their biological functions. a, Core CREs; b, Stress related CREs; c, Cellular developmental related CREs; d, Hormonal regulation related CREs; e, Unknown CREs.

Supplementary Fig. 2. Schematic representation of Cis-Regulatory Elements (CREs). Promoter sequences (2 kb upstream of start codon) of 12 OsTPPs were analyzed using PlantCARE database. Different colors and shapes of markers represent various CREs. (A) Core CREs. (B) Stress related CREs. (C) Cellular development related CREs. (D) Hormonal regulation related CREs. (E) Unknown CREs.

Supplementary Fig. 3. Expression heat map and gene distance matrix of OsTPPs. (A) Heat map representing OsTPPs expression during different developmental stages. (B) Gene Distance Matrix, Pearson correlation according to mRNA expression using MeV.

Supplementary Fig. 4. Frequency of different CREs in each OsTPP. CRE, Cis-regulatory elements; SrCREs, Stress related CREs; CdCREs, Cellular development related CREs; HrCREs, Hormonal regulation related CREs.

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb)

Supplementary file2 (PPTX 3524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Rahman, M.M., Eom, JS. et al. Genome-wide Identification, Expression Profiling and Promoter Analysis of Trehalose-6-Phosphate Phosphatase Gene Family in Rice. J. Plant Biol. 64, 55–71 (2021). https://doi.org/10.1007/s12374-020-09279-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09279-x

Keywords

Navigation