Skip to main content
Log in

Brain identification of IBS patients based on GBDT and multiple imaging techniques

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The brain biomarker of irritable bowel syndrome (IBS) patients is still lacking. The study aims to explore a new technology studying the brain alterations of IBS patients based on multi-source brain data. In the study, a decision-level fusion method based on gradient boosting decision tree (GBDT) was proposed. Next, 100 healthy subjects were used to validate the effectiveness of the method. Finally, the identification of brain alterations and the pain evaluation in IBS patients were carried out by the fusion method based on the resting-state fMRI and DWI for 46 patients and 46 controls selected randomly from 100 healthy subjects. The results showed that the method can achieve good classification between IBS patients and controls (accuracy = 95%) and pain evaluation of IBS patients (mean absolute error = 0.1977). Moreover, both the gain-based and the permutation-based evaluation instead of statistical analysis showed that left cingulum bundle contributed most significantly to the classification, and right precuneus contributed most significantly to the evaluation of abdominal pain intensity in the IBS patients. The differences seem to suggest a probable but unexplored separation about the central regions between the identification and progression of IBS. This finding may provide one new thought and technology for brain alteration related to IBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Drossman DA, Dumitrascu DL (2006) Rome III: new standard for functional gastrointestinal disorders. J Gastrointestin Liver Dis 15(3):237

    PubMed  Google Scholar 

  2. Drossman DA, Hasler WL (2016) Rome IV—functional GI disorders: disorders of gut-brain interaction. Gastroenterology 150(6):1257–1261

    Article  PubMed  Google Scholar 

  3. Ford MJ, Miller PM, Eastwood J, Eastwood MA (1987) Life events, psychiatric illness and the irritable bowel syndrome. Gut 28(2):160–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thijssen AY, Jonkers DM, Leue C, van der Veek PP, Vidakovic-Vukic M, van Rood YR et al (2010) Dysfunctional cognitions, anxiety and depression in irritable bowel syndrome. J Clin Gastroenterol 44(10):e236–e241

    Article  CAS  PubMed  Google Scholar 

  5. Rapps N, van Oudenhove L, Enck P, Aziz Q (2008) Brain imaging of visceral functions in healthy volunteers and IBS patients. J Psychosom Res 64(6):599–604

    Article  PubMed  Google Scholar 

  6. Mertz H, Morgan V, Tanner G, Pickens D, Price R, Shyr Y et al (2000) Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology 118(5):842–848

    Article  CAS  PubMed  Google Scholar 

  7. Wang D, Zhang X, Zhang X, Huang Z, Song Y (2017) Magnetic resonance imaging analysis of brain function in patients with irritable bowel syndrome. BMC Gastroenterol 17(1):148

    Article  PubMed  PubMed Central  Google Scholar 

  8. Drossman DA (2016) Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology 150(6):1262–1279

    Article  Google Scholar 

  9. Tack J, Drossman DA (2017) What’s new in Rome IV? Neurogastroenterol Motil 29(9):e13053

    Article  Google Scholar 

  10. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong EEC, Van Timmeren J et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762

    Article  PubMed  Google Scholar 

  11. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577

    Article  PubMed  Google Scholar 

  12. Weaver KR, Sherwin LB, Walitt B, Melkus GDE, Henderson WA (2016) Neuroimaging the brain-gut axis in patients with irritable bowel syndrome. World J Gastrointest Pharmacol Ther 7(2):320

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma X, Li S, Tian J, Jiang G, Wen H, Wang T et al (2015) Altered brain spontaneous activity and connectivity network in irritable bowel syndrome patients: a resting-state fMRI study. Clin Neurophysiol 126(6):1190–1197

    Article  PubMed  Google Scholar 

  14. Nan J, Yang W, Meng P, Huang W, Zheng Q, Xia Y et al (2020) Changes of the postcentral cortex in irritable bowel syndrome patients. Brain Imaging Behav 14(5):1566–1576

    Article  PubMed  Google Scholar 

  15. Seminowicz DA, Labus JS, Bueller JA, Tillisch K, Naliboff BD, Bushnell MC et al (2010) Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology 139(1):48–57

    Article  PubMed  Google Scholar 

  16. Blankstein U, Chen J, Diamant NE, Davis KD (2010) Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology 138(5):1783–1789

    Article  PubMed  Google Scholar 

  17. Witt ST, Bednarska O, Keita ÅV, Icenhour A, Jones MP, Elsenbruch S et al (2019) Interactions between gut permeability and brain structure and function in health and irritable bowel syndrome. NeuroImage 21:101602

    Article  PubMed  Google Scholar 

  18. Koloski N, Jones M, Talley N (2016) Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment Pharmacol Ther 44(6):592–600

    Article  CAS  PubMed  Google Scholar 

  19. Moloney R, Stilling R, Dinan T, Cryan J (2015) Early-life stress-induced visceral hypersensitivity and anxiety behavior is reversed by histone deacetylase inhibition. Neurogastroenterol Motil 27(12):1831–1836

    Article  CAS  PubMed  Google Scholar 

  20. Tillisch K, Mayer EA, Labus JS (2011) Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 140(1):91–100

    Article  PubMed  Google Scholar 

  21. Larsson MB, Tillisch K, Craig A, Engström M, Labus J, Naliboff B et al (2012) Brain responses to visceral stimuli reflect visceral sensitivity thresholds in patients with irritable bowel syndrome. Gastroenterology 142(3):463–72

    Article  PubMed  Google Scholar 

  22. Qi R, Liu C, Ke J, Xu Q, Zhong J, Wang F et al (2016) Intrinsic brain abnormalities in irritable bowel syndrome and effect of anxiety and depression. Brain Imaging Behav 10(4):1127–1134

    Article  PubMed  Google Scholar 

  23. Ke J, Qi R, Liu C, Xu Q, Wang F, Zhang L et al (2015) Abnormal regional homogeneity in patients with irritable bowel syndrome: a resting-state functional MRI study. Neurogastroenterol Motil 27(12):1796–1803

    Article  CAS  PubMed  Google Scholar 

  24. Labus JS, Hollister EB, Jacobs J, Kirbach K, Oezguen N, Gupta A et al (2017) Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome 5(1):1–17

    Article  Google Scholar 

  25. Labus JS, Dinov ID, Jiang Z, Ashe-McNalley C, Zamanyan A, Shi Y et al (2014) Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain® 155(1):137–49

    Article  PubMed  Google Scholar 

  26. Ellingson BM, Mayer E, Harris RJ, Ashe-McNally C, Naliboff BD, Labus JS et al (2013) Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. PAIN® 154(9):1528–41

    Article  PubMed  Google Scholar 

  27. Garcés P, Pereda E, Hernández-Tamames JA, Francisco DP, Fernando M, José ÁP (2016) Multimodal description of whole brain connectivity: a comparison of resting state MEG, fMRI, and DWI. Hum Brain Mapp 37(1):20–34

    Article  PubMed  Google Scholar 

  28. Meng X, Jiang R, Lin D, Bustillo J, Jones T, Chen J et al (2017) Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data. Neuroimage 145:218–229

    Article  PubMed  Google Scholar 

  29. Sui J, Qi S, van Erp TGM, Bustillo J, Jiang R, Lin D et al (2018) Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion. Nat Commun 9(1):1–14

    Article  Google Scholar 

  30. Qi S, Calhoun VD, van Erp TGM, Bustillo J, Damaraju E, Turner JA et al (2018) Multimodal fusion with reference: searching for joint neuromarkers of working memory deficits in schizophrenia. IEEE Trans Med Imaging 37(1):93–105

    Article  PubMed  Google Scholar 

  31. Beddar-Wiesing S, Bieshaar M (2020) Multi-sensor data and knowledge fusion—a proposal for a terminology definition

  32. Castanedo F (2013) A review of data fusion techniques. Sci World J 2013:704504

    Article  Google Scholar 

  33. Sui J, Adali T, Yu Q, Chen J, Calhoun VD (2012) A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods 204(1):68–81

    Article  PubMed  Google Scholar 

  34. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459

    Article  Google Scholar 

  35. Hanchuan P, Chris D (2005) Minimum redundancy feature selection from microarray gene expression data. Bioinform Comput Biol 3(2):185–206

    Article  Google Scholar 

  36. Kramer MA (1991) Nonlinear principal component analysis using autoassociative neural networks. AIChE J 37(2):233–243

    Article  ADS  CAS  Google Scholar 

  37. Guyon I, Gunn S, Nikravesh M, Zadeh LA (2008) Feature extraction: foundations and applications. Springer, New York

    Google Scholar 

  38. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91

    Article  PubMed  Google Scholar 

  39. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906

    Article  CAS  PubMed  Google Scholar 

  40. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  CAS  PubMed  Google Scholar 

  41. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2):570–582

    Article  PubMed  Google Scholar 

  42. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  MathSciNet  Google Scholar 

  43. Tsamardinos I, Greasidou E, Borboudakis G (2018) Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. Mach Learn 107(12):1895–1922

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  44. Drossman DADD (2006) Rome III: New standard for functional gastrointestinal disorders. J Gastrointest Lier 15:237

    Google Scholar 

  45. Cui Z, Zhong S, Xu P, He Y, Gong G (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. McGlone J (1980) Sex differences in human brain asymmetry: a critical survey. Behav Brain Sci 3(2):215–227

    Article  Google Scholar 

  47. Aycheh HM, Seong J-K, Shin J-H, Na DL, Kang B, Seo SW et al (2018) Biological brain age prediction using cortical thickness data: a large scale cohort study. Front Aging Neurosci 10:252

    Article  PubMed  PubMed Central  Google Scholar 

  48. Group WMGRS (2006) WHO Child Growth Standards based on length/height, weight and age. Acta Paediatrica Suppl 450:76–85

  49. Mietchen D, Gaser C (2009) Computational morphometry for detecting changes in brain structure due to development, aging, learning, disease and evolution. Front Neuroinform 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grabowska A (2017) Sex on the brain: are gender-dependent structural and functional differences associated with behavior? J Neurosci Res 95(1–2):200–212

    Article  CAS  PubMed  Google Scholar 

  51. Nostro AD, Muller VI, Reid AT, Eickhoff SB (2017) Correlations between personality and brain structure: a crucial role of gender. Cereb Cortex 27(7):3698–712

    PubMed  Google Scholar 

  52. Mowinckel AM, Espeseth T, Westlye LT (2012) Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults. Neuroimage 63(3):1364–1373

    Article  PubMed  Google Scholar 

  53. Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. Neuroimage 44(3):715–723

    Article  PubMed  Google Scholar 

  54. Grayson DS, Ray S, Carpenter S, Iyer S, Dias TGC, Stevens C et al (2014) Structural and functional rich club organization of the brain in children and adults. PLoS ONE 9(2):e88297

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K et al (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci 111(2):823–828

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Tomasi D, Volkow ND (2012) Gender differences in brain functional connectivity density. Hum Brain Mapp 33(4):849–860

    Article  PubMed  Google Scholar 

  57. Fan Q, Tian Q, Ohringer NA, Nummenmaa A, Witzel T, Tobyne SM et al (2019) Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. Neuroimage 191:325–336

    Article  PubMed  Google Scholar 

  58. Cole JH, Poudel RP, Tsagkrasoulis D, Caan MW, Steves C, Spector TD et al (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124

    Article  PubMed  Google Scholar 

  59. Liu J, Meng H, Nandi A, Li M (eds) (2016). Emotion detection from EEG recordings. In: 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD). IEEE

  60. Nieuwenhuis M, Schnack HG, van Haren NE, Lappin J, Morgan C, Reinders AA et al (2017) Multi-center MRI prediction models: predicting sex and illness course in first episode psychosis patients. Neuroimage 145:246–253

    Article  PubMed  Google Scholar 

  61. Vuoksimaa E, Panizzon MS, Franz CE, Notestine CF, Hagler DJJ, Lyons MJ et al (2018) Brain structure mediates the association between height and cognitive ability. Brain Struct Funct 223(7):3487–3494

    Article  PubMed  PubMed Central  Google Scholar 

  62. Amen DG, Wu J, George N, Newberg A (2020) Patterns of regional cerebral blood flow as a function of obesity in adults. J Alzheimers Dis 77(3):1331–1337

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hubbard CS, Becerra L, Heinz N, Ludwick A, Rasooly T, Yendiki A et al (2018) Microstructural white matter abnormalities in the dorsal cingulum of adolescents with IBS. Eneuro 5(4)

  64. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(3):564–583

    Article  PubMed  Google Scholar 

  65. Su C, Liu W, Wang Q, Qiu S, Li M, Lv Y et al (2022) Abnormal resting-state local spontaneous functional activity in irritable bowel syndrome patients: a meta-analysis. J Affect Disord 302:177–184

    Article  PubMed  Google Scholar 

  66. Ao W, Cheng Y, Chen M, Wei F, Yang G, An Y et al (2021) Intrinsic brain abnormalities of irritable bowel syndrome with diarrhea: a preliminary resting-state functional magnetic resonance imaging study. BMC Med Imaging 21(1):1–8

    Article  Google Scholar 

  67. Guleria A, Karyampudi A, Singh R, Khetrapal CL, Verma A, Ghoshal UC et al (2017) Mapping of brain activations to rectal balloon distension stimuli in male patients with irritable bowel syndrome using functional magnetic resonance imaging. J Neurogastroenterol Motil 23(3):415

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bhatt RR, Gupta A, Labus JS, Zeltzer LK, Tsao JC, Shulman RJ et al (2019) Altered brain structure and functional connectivity and its relation to pain perception in girls with irritable bowel syndrome. Psychosom Med 81(2):146

    Article  PubMed  PubMed Central  Google Scholar 

  69. Qi R, Ke J, Schoepf UJ, Varga-Szemes A, Milliken CM, Liu C et al (2016) Topological reorganization of the default mode network in irritable bowel syndrome. Mol Neurobiol 53(10):6585–6593

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Young Teacher Foundation of Henan Province [No. 2021GGJS093 and 2020GGJS123], the Project for the Science and Technology Planning Program of Henan Province [No. 232102211003, 22A520046, and 232102210062] and Henan Key Laboratory of Food Safety Data Intelligence.

Author information

Authors and Affiliations

Authors

Contributions

LH and JN: conceptualization and investigation. LH, QX, PM and JN: methodology, writing—original draft preparation and editing. JN, PM and LH: resources, software, and validation. LH and RX: writing—review and supervision. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Jiaofen Nan.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Review Board of the First Affiliated Hospital of the Medical College in Xi’an Jiaotong University (2013KL011). Prior to the study, all participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Xu, Q., Meng, P. et al. Brain identification of IBS patients based on GBDT and multiple imaging techniques. Phys Eng Sci Med (2024). https://doi.org/10.1007/s13246-024-01394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13246-024-01394-0

Keywords

Navigation