Skip to main content
Log in

Magnetic resonance-based imaging biopsy with signatures including topological Betti number features for prediction of primary brain metastatic sites

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This study incorporated topology Betti number (BN) features into the prediction of primary sites of brain metastases and the construction of magnetic resonance-based imaging biopsy (MRB) models. The significant features of the MRB model were selected from those obtained from gray-scale and three-dimensional wavelet-filtered images, BN and inverted BN (iBN) maps, and clinical variables (age and gender). The primary sites were predicted as either lung cancer or other cancers using MRB models, which were built using seven machine learning methods with significant features chosen by three feature selection methods followed by a combination strategy. Our study dealt with a dataset with relatively smaller brain metastases, which included effective diameters greater than 2 mm, with metastases ranging from 2 to 9 mm accounting for 17% of the dataset. The MRB models were trained by T1-weighted contrast-enhanced images of 494 metastases chosen from 247 patients and applied to 115 metastases from 62 test patients. The most feasible model attained an area under the receiver operating characteristic curve (AUC) of 0.763 for the test patients when using a signature including features of BN and iBN maps, gray-scale and wavelet-filtered images, and clinical variables. The AUCs of the model were 0.744 for non-small cell lung cancer and 0.861 for small cell lung cancer. The results suggest that the BN signature boosted the performance of MRB for the identification of primary sites of brain metastases including small tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Achrol AS, Rennert RC, Anders C et al (2019) Brain metastases. Nat Rev Dis Prim 5(1):5. https://doi.org/10.1038/s41572-018-0055-y

    Article  PubMed  Google Scholar 

  2. Suh JH, Kotecha R, Chao ST et al (2020) Current approaches to the management of brain metastases. Clin Oncol 17(5):279–299. https://doi.org/10.1038/s41571-019-0320-3

    Article  Google Scholar 

  3. Farris JC, Hughes RT, Razavian NB et al (2022) Brain metastasis incidence and patterns of presentation after definitive treatment of locally advanced non-small cell lung cancer: a potential argument for brain magnetic resonance imaging surveillance. Adv Radiat Oncol 8(3):101058. https://doi.org/10.1016/j.adro.2022.101058

    Article  PubMed Central  Google Scholar 

  4. Brain Tumor Registry of Japan (2005–2008) (2017) Neurol Med Chir (Tokyo) 57:9-102. https://doi.org/10.2176/nmc.sup.2017-0001

  5. Davis FG, Dolecek TA, McCarthy BJ et al (2012) Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neurooncology 14(9):1171–1177. https://doi.org/10.1093/neuonc/nos152

    Article  Google Scholar 

  6. Yousefi M, Bahrami T, Salmaninejad A et al (2017) Lung cancer-associated brain metastasis: molecular mechanisms and therapeutic options. Cell Oncol 40(5):419–441. https://doi.org/10.1007/s13402-017-0345-5

    Article  CAS  Google Scholar 

  7. The Japan Society for Neuro-Oncology (2019) Brain Tumor Clinical Practice Guidelines 2019, 2nd ed. The Japan Society for Neuro-Oncology; Kanehara Publishing Co. https://www.jsn-o.com/guideline/index.html. Accessed 12 December 2022

  8. Oermann EK, Kress MAS, Todd JV et al (2013) The impact of radiosurgery fractionation and tumor radiobiology on the local control of brain metastases. J Neurosurg 119(5):1131–1138. https://doi.org/10.3171/2013.8.JNS122177

    Article  PubMed  Google Scholar 

  9. Sacks P, Rahman M (2020) Epidemiology of brain metastases. Neurosurg Clin North Am 31(4):481–488. https://doi.org/10.1016/j.nec.2020.06.001

    Article  Google Scholar 

  10. Soffietti R, Abacioglu U, Baumert B et al (2017) Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neurooncology 19(2):162–174. https://doi.org/10.1093/neuonc/now241

    Article  CAS  Google Scholar 

  11. Elsheikh TM, Silverman JF (2019) Fine needle aspiration and core needle biopsy of metastatic malignancy of unknown primary site. Mod Pathol: Official J United States Can Acad Pathol Inc 32(Suppl 1):58–70. https://doi.org/10.1038/s41379-018-0149-9

    Article  Google Scholar 

  12. Fizazi K, Greco FA, Pavlidis N et al (2015) Cancers of unknown primary site: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol: Official J European Soc Med Oncol/ESMO 26(Suppl 5):133–138. https://doi.org/10.1093/annonc/mdv305

    Article  Google Scholar 

  13. Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T et al (2020) Tumor microenvironment differences between primary tumor and brain metastases. J Translational Med 18(1):1. https://doi.org/10.1186/s12967-019-02189-8

    Article  Google Scholar 

  14. Carnevale JA, Imber BS, Winston GM et al (2021) Risk of tract recurrence with stereotactic biopsy of brain metastases: an 18-year cancer center experience. J Neurosurg 136(4):1045–1051. https://doi.org/10.3171/2021.3.JNS204347

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kniep HC, Madesta F, Schneider T et al (2019) Radiomics of Brain MRI: utility in prediction of metastatic tumor type. Radiology 290(2):479–487. https://doi.org/10.1148/radiol.2018180946

    Article  PubMed  Google Scholar 

  16. Ortiz-Ramon R, Larroza A, Arana E et al (2017) A radiomics evaluation of 2D and 3D MRI texture features to classify brain metastases from lung cancer and melanoma. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 493–496. https://doi.org/10.1109/EMBC.2017.8036869

  17. Ortiz-Ramón R, Larroza A, Ruiz-España S et al (2018) Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur Radiol 28(11):4514–4523. https://doi.org/10.1007/s00330-018-5463-6

    Article  PubMed  Google Scholar 

  18. Lyu Q, Namjoshi SV, McTyre E et al (2022) A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images. Patterns (NY) 3(11):100613. https://doi.org/10.1016/j.patter.2022.100613

    Article  Google Scholar 

  19. Grossman R, Haim O, Abramov S et al (2021) Differentiating small-cell lung cancer from non-small-cell lung cancer brain metastases based on MRI using efficientnet and transfer learning approach. Technol Cancer Res Treat 20. https://doi.org/10.1177/15330338211004919

  20. Tran KA, Kondrashova O, Bradley A et al (2021) Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 13(1):152. https://doi.org/10.1186/s13073-021-00968-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oyama A, Hiraoka Y, Obayashi I et al (2019) Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach. Sci Rep 9(1):8764. https://doi.org/10.1038/s41598-019-45283-z

    Article  CAS  PubMed Central  Google Scholar 

  22. Ikushima K, Arimura H, Yasumatsu R et al (2023) Topology-based radiomic features for prediction of parotid gland cancer malignancy grade in magnetic resonance images. Magn Reson Mater Phy. https://doi.org/10.1007/s10334-023-01084-0

    Article  Google Scholar 

  23. Balari S, Lorenzo G, Gonzalez G (2013) Computational phenotypes: towards an evolutionary developmental biolinguistics. OUP, Oxford, pp 89–107. https://doi.org/10.1093/acprof:oso/9780199665464.001.0001

    Book  Google Scholar 

  24. Ninomiya K, Arimura H, Tanaka K et al (2023) Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients. Comput Methods Programs Biomed 236:107544. https://doi.org/10.1016/j.cmpb.2023.107544

    Article  PubMed  Google Scholar 

  25. Kodama T, Arimura H, Shirakawa Y et al (2022) Relapse predictability of topological signature on pretreatment planning CT images of stage I non-small cell lung cancer patients before treatment with stereotactic ablative radiotherapy. Thorac Cancer 13(15):2117–2126. https://doi.org/10.1111/1759-7714.14483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Ye G, Huang L et al (2020) Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma. Aging 10(21):21559–21581. https://doi.org/10.18632/aging.103945

    Article  Google Scholar 

  27. Sadeghi N, D’Haene N, Decaestecker C et al (2008) Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. AJNR Am J Neuroradiol 29(3):476–482. https://doi.org/10.3174/ajnr.A0851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heynold E, Zimmermann M, Hore N et al (2021) Physiological MRI biomarkers in the differentiation between glioblastomas and solitary brain metastases. Mol Imaging Biol 23(5):787–795. https://doi.org/10.1007/s11307-021-01604-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le QC, Arimura H, Ninomiya K et al (2020) Radiomic features based on hessian index for prediction of prognosis in head-and-neck cancer patients. Sci Rep 10(1):21301. https://doi.org/10.1038/s41598-020-78338-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu DG, Ballangrud Ã, Shamseddine A et al (2021) Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images. Phys Med Biol 66(17). https://doi.org/10.1088/1361-6560/ac1835

  31. Herman GT, Zheng J, Bucholtz CA (1992) Shape-based interpolation. IEEE Comput Graph Appl 12:69–79. https://doi.org/10.1109/38.135915

    Article  Google Scholar 

  32. Soufi M, Arimura H, Nagami N (2018) Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Med Phys 45(11):5116–5128. https://doi.org/10.1002/mp.13202

    Article  PubMed  Google Scholar 

  33. Toriwaki J, Yonekura T (2002) Euler number and connectivity indexes of a three-dimensional digital picture. Forma-Tokyo- 17(3):183–209

    Google Scholar 

  34. Hatcher A (2001) Algebraic topology. Cambridge University Press, Cambridge

    Google Scholar 

  35. Su CQ, Chen XT, Duan SF et al (2021) A radiomics-based model to differentiate glioblastoma from solitary brain metastases. Clin Radiol 76(8):629.e11-629.e18. https://doi.org/10.1016/j.crad.2021.04.012

    Article  PubMed  Google Scholar 

  36. Peduzzi P, Concato J, Kemper E et al (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49(12):1373–1379. https://doi.org/10.1016/S0895-4356(96)00236-3

    Article  CAS  PubMed  Google Scholar 

  37. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37. https://doi.org/10.1109/34.824819

    Article  Google Scholar 

  38. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc. Ser B (Methodol), Stat Methodol 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  39. Fonti V, Belitser E (2017) Feature selection using lasso. VU Amsterdam Research Paper in Business analytics 30:1–25

    Google Scholar 

  40. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  41. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205. https://doi.org/10.1142/S0219720005001004

    Article  CAS  PubMed  Google Scholar 

  42. Ninomiya K, Arimura H, Chan WY et al (2021) Robust radiogenomics approach to the identification of EGFR mutations among patients with NSCLC from three different countries using topologically invariant Betti numbers. PLoS ONE 16(1):e0244354. https://doi.org/10.1371/journal.pone.0244354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Artzi M, Bressler I, Ben Bashat D (2019) Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging 50(2):519–528. https://doi.org/10.1002/jmri.26643

    Article  PubMed  Google Scholar 

  44. Priya S, Liu Y, Ward C et al (2021) Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics. Sci Rep 11(1):10478. https://doi.org/10.1038/s41598-021-90032-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Causans A, Carré A, Roux A et al (2021) Development of a machine learning classifier based on radiomic features extracted from post-contrast 3D T1-Weighted MR images to distinguish glioblastoma from solitary brain metastasis. Front Oncol 11:638262. https://doi.org/10.3389/fonc.2021.638262

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen C, Ou X, Wang J et al (2019) Radiomics-based machine learning in differentiation between glioblastoma and metastatic brain tumors. Front Oncol 9:806. https://doi.org/10.3389/fonc.2019.00806

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schapire RE (2013) Explaining adaboost. In: Schölkopf B, Luo Z, Vovk V (eds) Empirical inference. Springer, Berlin, pp 37–52. https://doi.org/10.1007/978-3-642-41136-6_5

    Chapter  Google Scholar 

  48. Schölkopf B (1997) Support vector learning. Dissertation, Oldenbourg München, Germany

  49. Hoerl AE, Kennard RW (2000) Ridge regression: biased estimation for nonorthogonal problems. technometrics: a journal of statistics for the physical. Chem Eng Sci 42(1):80–86. https://doi.org/10.1080/00401706.1970.10488634

    Article  Google Scholar 

  50. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  51. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: Data Mining, Inference, and Prediction. Springer, New York

    Book  Google Scholar 

  52. Chen T, Guestrin C (2016) XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, pp 785–794. https://doi.org/10.1145/2939672.2939785

  53. Ke G, Meng Q, Finley T et al (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA

  54. Sun C, Wee WG (1983) Neighboring gray level dependence matrix for texture classification. Comput Vis Graphics Image Process 23(3):341–352. https://doi.org/10.1016/0146-664X(82)90093-4

    Article  Google Scholar 

  55. Usinskiene J, Ulyte A, Bjørnerud A et al (2016) Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology 58(4):339–350. https://doi.org/10.1007/s00234-016-1642-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to all members of the Arimura Laboratory (http://web.shs.kyushu-u.ac.jp/~arimura/) for their valuable comments and helpful discussion.

Funding

This study was partially supported by a grant from JSPS KAKENHI (grant number JP20K08084).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HA and ME. Data curation: KK, HO, HI, KM and ME. Formal analysis: ME, HA, KM, TK and TT. Funding acquisition: HA. Investigation: ME, HA, KM and TK. Methodology: ME, HA, KM, TK and TT. Project administration: HA and KK. Resources: KK, HO and HI. Software: ME, HA, KM and TK. Supervision: HA and KK. Validation: ME and HA. Visualization: ME and HA. Writing—original draft: ME and HA.

Corresponding authors

Correspondence to Hidetaka Arimura or Kazuma Kobayashi.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The protocol for this retrospective study was approved by the institutional review boards of the National Cancer Center Research Institute and Kyushu University Hospital.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1214 kb)

Supplementary material 2 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egashira, M., Arimura, H., Kobayashi, K. et al. Magnetic resonance-based imaging biopsy with signatures including topological Betti number features for prediction of primary brain metastatic sites. Phys Eng Sci Med 46, 1411–1426 (2023). https://doi.org/10.1007/s13246-023-01308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-023-01308-6

Keywords

Navigation