Skip to main content

Advertisement

Log in

Non-calcified active atherosclerosis plaque detection with 18F-NaF and 18F-FDG PET/CT dynamic imaging

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Arterial inflammation is an indicator of atheromatous plaque vulnerability to detach and to obstruct blood vessels in the heart or in the brain thus causing heart attack or stroke. To date, it is difficult to predict the plaque vulnerability. This study was aimed to assess the behavior of 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG) uptake in the aorta and iliac arteries as a function of plaque density on CT images. We report metabolically active artery plaques associated to inflammation in the absence of calcification. 18 elderly volunteers were recruited and imaged with computed tomography (CT) and positron emission tomography (PET) with 18F-NaF and 18F-FDG. A total of 1338 arterial segments were analyzed, 766 were non-calcified and 572 had calcifications. For both 18F-NaF and 18F-FDG, the mean SUV values were found statistically significantly different between non-calcified and calcified artery segments. Clustering CT non-calcified segments, excluding blood, resulted in two clusters C1 and C2 with a mean density of 30.63 ± 5.06 HU in C1 and 43.06 ± 4.71 HU in C2 (P < 0.05), and their respective SUV were found statistically different in 18F-NaF and 18F-FDG. The 18F-NaF images showed plaques not detected on CT images, where the 18F-FDG SUV values were high in comparison to artery walls without plaques. The density on CT images alone corresponding to these plaques could be further investigated to see whether it can be an indicator of the active plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Virmani R, Kolodgie FD, Burke AP et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061. https://doi.org/10.1161/01.ATV.0000178991.71605.18

    Article  CAS  PubMed  Google Scholar 

  2. Kuku KO, Singh M, Ozaki Y et al (2020) Near-Infrared spectroscopy intravascular ultrasound Imaging: state of the art. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2020.00107

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kramer CM, Anderson JD (2007) MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther 5:69–80. https://doi.org/10.1586/14779072.5.1.69

    Article  PubMed  PubMed Central  Google Scholar 

  4. Naghavi M, Madjid M, Khan MR et al (2001) New developments in the detection of vulnerable plaque. Curr Atheroscler Rep 3:125–135. https://doi.org/10.1007/s11883-001-0048-1

    Article  CAS  Google Scholar 

  5. Nighoghossian N, Derex L, Douek P (2005) The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36:2764–2772. https://doi.org/10.1161/01.STR.0000190895.51934.43

    Article  PubMed  Google Scholar 

  6. Revkin JH, Shear CL, Pouleur HG et al (2007) Biomarkers in the prevention and treatment of atherosclerosis: need, validation, and future. Pharmacol Rev 59:40–53. https://doi.org/10.1124/pr.59.1.1

    Article  CAS  PubMed  Google Scholar 

  7. Narula J, Nakano M, Virmani R et al (2013) Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 61:1041–1051. https://doi.org/10.1016/j.jacc.2012.10.054

    Article  PubMed  PubMed Central  Google Scholar 

  8. Owen DRJ, Lindsay AC, Choudhury RP, Fayad ZA (2011) Imaging of atherosclerosis. Annu Rev Med 62:25–40. https://doi.org/10.1146/annurev-med-041709-133809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vengrenyuk Y, Carlier S, Xanthos S et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci 103:14678–14683. https://doi.org/10.1073/pnas.0606310103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hunt JL, Fairman R, Mitchell ME et al (2002) Bone formation in carotid plaques. Stroke 33:1214–1219. https://doi.org/10.1161/01.STR.0000013741.41309.67

    Article  PubMed  Google Scholar 

  11. Derlin T, Richter U, Bannas P et al (2010) Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 51:862–865. https://doi.org/10.2967/jnumed.110.076471

    Article  PubMed  Google Scholar 

  12. Joshi NV, Vesey AT, Williams MC et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383:705–713. https://doi.org/10.1016/S0140-6736(13)61754-7

    Article  PubMed  Google Scholar 

  13. Motoyama S, Kondo T, Sarai M et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326. https://doi.org/10.1016/j.jacc.2007.03.044

    Article  PubMed  Google Scholar 

  14. Das M, Braunschweig T, Mühlenbruch G et al (2009) Carotid plaque analysis: comparison of dual-source computed tomography (CT) findings and histopathological correlation. Eur J Vasc Endovasc Surg 38:14–19. https://doi.org/10.1016/j.ejvs.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  15. Saremi F, Achenbach S (2015) Coronary plaque characterization using CT. Am J Roentgenol 204:W249–W260. https://doi.org/10.2214/AJR.14.13760

    Article  Google Scholar 

  16. Tarkin JM, Joshi FR, Rudd JHF (2014) PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol 11:443–457. https://doi.org/10.1038/nrcardio.2014.80

    Article  CAS  PubMed  Google Scholar 

  17. Figueroa AL, Abdelbaky A, Truong QA et al (2013) Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging 6:1250–1259. https://doi.org/10.1016/j.jcmg.2013.08.006

    Article  PubMed  Google Scholar 

  18. Izquierdo-Garcia D, Davies JR, Graves MJ et al (2009) Comparison of methods for magnetic resonance-guided [18-F]Fluorodeoxyglucose Positron Emission Tomography in Human carotid arteries. Stroke 40:86–93. https://doi.org/10.1161/STROKEAHA.108.521393

    Article  PubMed  Google Scholar 

  19. Alberts I, Hünermund JN, Prenosil G et al (2021) Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the biograph vision quadra with the biograph vision PET/CT. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-021-05282-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Torizuka T, Nobezawa S, Momiki S et al (2000) Short dynamic FDG-PET imaging protocol for patients with lung cancer. Eur J Nucl Med 27:1538–1542. https://doi.org/10.1007/s002590000312

    Article  CAS  PubMed  Google Scholar 

  21. Derlin T, Tóth Z, Papp L et al (2011) Correlation of inflammation assessed by18F-FDG PET, active mineral deposition assessed by18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. https://doi.org/10.2967/jnumed.111.087452

    Article  PubMed  Google Scholar 

  22. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832. https://doi.org/10.1016/0735-1097(90)90282-T

    Article  CAS  PubMed  Google Scholar 

  23. Liu C-Y, Chen D, Bluemke DA et al (2015) Evolution of aortic wall thickness and stiffness with atherosclerosis. Hypertension 65:1015–1019. https://doi.org/10.1161/HYPERTENSIONAHA.114.05080

    Article  CAS  PubMed  Google Scholar 

  24. Croteau E, Lavallée E, Labbe SM et al (2010) Image-derived input function in dynamic human PET/CT: methodology and validation with 11 C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain. Eur J Nucl Med Mol Imaging 37:1539–1550. https://doi.org/10.1007/s00259-010-1443-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hofmann Bowman MA, McNally EM (2012) Genetic pathways of vascular calcification. Trends Cardiovasc Med 22:93–98. https://doi.org/10.1016/j.tcm.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  26. Blomberg BA, de Jong PA, Thomassen A et al (2017) Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur J Nucl Med Mol Imaging 44:249–258. https://doi.org/10.1007/s00259-016-3552-9

    Article  PubMed  Google Scholar 

  27. Moss AJ, Adamson PD, Newby DE, Dweck MR (2016) Positron emission tomography imaging of coronary atherosclerosis. Future Cardiol 12:483–496. https://doi.org/10.2217/fca-2016-0017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee J-W, Bae S-H, Jeong J-W et al (2004) Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions. Exp Mol Med 36:1–12. https://doi.org/10.1038/emm.2004.1

    Article  PubMed  Google Scholar 

  29. Abdelbaky A, Corsini E, Figueroa AL et al (2013) Focal arterial inflammation precedes subsequent calcification in the same location. Circ Cardiovasc Imaging 6:747–754. https://doi.org/10.1161/CIRCIMAGING.113.000382

    Article  PubMed  Google Scholar 

  30. Derlin T, Richter U, Bannas P et al (2010) Feasibility of 18 F-Sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 51:862–865. https://doi.org/10.2967/jnumed.110.076471

    Article  PubMed  Google Scholar 

  31. Kitagawa T, Yamamoto H, Toshimitsu S et al (2017) 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 263:385–392. https://doi.org/10.1016/j.atherosclerosis.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  32. Vazquez-Figueroa JG, Rinehart S, Qian Z et al (2013) Prospective validation that vulnerable plaque associated with major adverse outcomes have larger plaque volume, less dense calcium, and more non-calcified plaque by quantitative, three-dimensional measurements using intravascular ultrasound with radiofreq. J Cardiovasc Transl Res 6:762–771. https://doi.org/10.1007/s12265-013-9473-0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wong KKL, Thavornpattanapong P, Cheung SCP et al (2012) Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc Disord. https://doi.org/10.1186/1471-2261-12-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Achenbach S, Raggi P (2010) Imaging of coronary atherosclerosis by computed tomography. Eur Heart J 31:1442–1448. https://doi.org/10.1093/eurheartj/ehq150

    Article  PubMed  Google Scholar 

  35. Kitagawa T, Yamamoto H, Horiguchi J et al (2009) Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging 2:153–160. https://doi.org/10.1016/j.jcmg.2008.09.015

    Article  PubMed  Google Scholar 

  36. Li X, Heber D, Gonzalez JC et al (2017) Association between osteogenesis and inflammation during the progression of calcified plaque evaluated by 18F-Fluoride and 18F-FDG. J Nucl Med 58:968–974. https://doi.org/10.2967/jnumed.116.182790

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AD received a student fellowship from the Faculty of Medicine and Health Sciences, University of Sherbrooke. MSA received a financial support from University of Hail in kingdom of Saudi Arabia.

Funding

This study was funded by the Canadian Institutes of Health Research (CIHR, Grant Number 407104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Bentourkia.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douhi, A., Al‑enezi, M.S., Berrahmoune, N. et al. Non-calcified active atherosclerosis plaque detection with 18F-NaF and 18F-FDG PET/CT dynamic imaging. Phys Eng Sci Med 46, 295–302 (2023). https://doi.org/10.1007/s13246-023-01218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-023-01218-7

Keywords

Navigation