Skip to main content
Log in

New developments in the detection of vulnerable plaque

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Failure of coronary angiography (luminography) in prediction of future acute coronary syndromes has cast a shadow of doubt over the value of this old gold-standard technique. The fact that angiographically invisible or nonsignificant lesions cause the majority of acute coronary syndromes has driven scientists to develop new diagnostic methods. In this article, we review the ongoing worldwide research on both invasive techniques (such as intravascular angioscopy and colorimetry, ultrasound, thermography, optical coherence tomography, near infrared spectroscopy, Raman spectroscopy, fluorescence emission spectroscopy, elastography, magnetic resonance imaging [MRI] and spectroscopy, nuclear immunoscintigraphy, electrical impedance imaging, vascular tissue doppler, and shear stress imaging) and noninvasive techniques (such as MRI, contrast-enhanced MRI with and without immunolabeled agents, electron beam computed tomography, multi-slice spiral / helical computed tomography, and nuclear imaging, including positron emission tomography). Each of these techniques and their potential combination holds promise for characterization of plaques responsible for acute coronary syndromes, namely vulnerable plaque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ross R, Glomset JA: The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 1976, 295:369–377.

    Article  PubMed  CAS  Google Scholar 

  2. Ross R: Atherosclerosis—an inflammatory disease [comment]. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  3. Maseri A, L’Abbate A, Baroldi G, et al.: Coronary vasospasm as a possible cause of myocardial infarction. A conclusion derived from the study of “preinfarction” angina. N Engl J Med 1978, 299:1271–1277.

    Article  PubMed  CAS  Google Scholar 

  4. Abela GS, Picon PD, Friedl SE, et al.: Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation 1995, 91:776–784.

    PubMed  CAS  Google Scholar 

  5. Davies MJ, Thomas T: The pathological basis and microanatomy of occlusive thrombus formation in human coronary arteries. Philos Trans R Soc Lond B Biol Sci 1981, 294:225–229.

    PubMed  CAS  Google Scholar 

  6. Falk E: Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983, 50:127–134.

    PubMed  CAS  Google Scholar 

  7. Walts AE, Fishbein MC, Sustaita H, Matloff JM: Ruptured atheromatous plaques in saphenous vein coronary artery bypass grafts: a mechanism of acute, thrombotic, late graft occlusion. Circulation 1982, 65:197–201.

    PubMed  CAS  Google Scholar 

  8. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al.: Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988, 12:56–62.

    Article  PubMed  CAS  Google Scholar 

  9. Muller JE, Tofler GH, Stone PH: Circadian variation and triggers of onset of acute cardiovascular disease [comment]. Circulation 1989, 79:733–743.

    PubMed  CAS  Google Scholar 

  10. Farb A, Tang AL, Burke AP, et al.: Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 1995, 92:1701–1709.

    PubMed  CAS  Google Scholar 

  11. Shah PK, Falk E, Badimon JJ, et al.: Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 1995, 92:1565–1569.

    PubMed  CAS  Google Scholar 

  12. Libby P, Sukhova G, Lee RT, Galis ZS: Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. J Cardiovasc Pharmacol 1995, 25:S9-S12.

    Article  PubMed  CAS  Google Scholar 

  13. Ambrose JA, Winters SL, Stern A, et al.: Angiographic morphology and the pathogenesis of unstable angina pectoris. J Am Coll Cardiol 1985, 5:609–616.

    Article  PubMed  CAS  Google Scholar 

  14. Farb A, Burke AP, Tang AL, et al.: Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996, 93:1354–1363.

    PubMed  CAS  Google Scholar 

  15. Arbustini E, Dal Bello B, Morbini P, et al.: Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 1999, 82:269–272.

    PubMed  CAS  Google Scholar 

  16. Virmani R, Kolodgie FD, Burke AP, et al.: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions [comment]. Arterioscler Thromb Vasc Biol 2000, 20:1262–1275.

    PubMed  CAS  Google Scholar 

  17. Aburahma AF, Robinson P, Decanio R: Prospective clinicopathologic study of carotid intraplague hemorrhage. Am Surg 1989, 55:169–173.

    PubMed  CAS  Google Scholar 

  18. Imparato AM, Riles TS, Gorstein F: The carotid bifurcation plaque: pathologic findings associated with cerebral ischemia. Stroke 1979, 10:238–245.

    PubMed  CAS  Google Scholar 

  19. Falk E: Coronary artery narrowing without irreversible myocardial damage or development of collaterals. Assessment of “critical” stenosis in a human model. Br Heart J 1982, 48:265–271.

    PubMed  CAS  Google Scholar 

  20. Glagov S, Weisenberg E, Zarins CK, et al.: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987, 316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  21. Ambrose JA, Winters SL, Arora RR, et al.: Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 1986, 7:472–478.

    Article  PubMed  CAS  Google Scholar 

  22. Yokoya K, Takatsu H, Suzuki T, et al.: Process of progression of coronary artery lesions from mild or moderate stenosis to moderate or severe stenosis: a study based on four serial coronary arteriograms per year. Circulation 1999, 100:903–909.

    PubMed  CAS  Google Scholar 

  23. Vaseghi MF, Hassan K, Siadaty S, et al.: Angiographic predictors of plaque progression in mildly to moderately diseased coronary arteries. Am J Cardiol 1999, 84:96P.

    Google Scholar 

  24. Uchida Y, Nakamura F, Tomaru T, et al.: Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J 1995, 130:195–203.

    Article  PubMed  CAS  Google Scholar 

  25. Yamagishi M, Terashima M, Awano K, et al.: Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 2000, 35:106–111.

    Article  PubMed  CAS  Google Scholar 

  26. Stefanadis C, Toutousaz K, Tsiamis E, et al.: Increased plaque temperature is a new independent predictor of cardiac adverse events after successful percutaneous intervention. Circulation 2000, 102:II-756.

    Google Scholar 

  27. Sherman CT, Litvack F, Grundfest W, et al.: Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med 1986, 315:913–919.

    Article  PubMed  CAS  Google Scholar 

  28. Mizuno K, Miyamoto A, Satomura K, et al.: Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991, 337:809–812.

    Article  PubMed  CAS  Google Scholar 

  29. Nesto RW, Waxman S, Mittleman MA, et al.: Angioscopy of culprit coronary lesions in unstable angina pectoris and correlation of clinical presentation with plaque morphology. Am J Cardiol 1998, 81:225–228.

    Article  PubMed  CAS  Google Scholar 

  30. Pandian NG: Intravascular and intracardiac ultrasound imaging. An old concept, now on the road to reality. Circulation 1989, 80:1091–1094.

    PubMed  CAS  Google Scholar 

  31. Casscells W, Hathorn B, David M, et al.: Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis [comment]. Lancet 1996, 347:1447–1451.

    Article  PubMed  CAS  Google Scholar 

  32. Stefanadis C, Diamantopoulos L, Vlachopoulos C, et al.: Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation 1999, 99:1965–1971.

    PubMed  CAS  Google Scholar 

  33. Stefanadis C, Diamantopoulos L, Dernellis J, et al.: Heat production of atherosclerotic plaques and inflammation assessed by the acute phase proteins in acute coronary syndromes. J Mol Cell Cardiol 2000, 32:43–52.

    Article  PubMed  CAS  Google Scholar 

  34. Huang D, Swanson EA, Lin CP, et al.: Optical coherence tomography. Science 1991, 254:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  35. Brezinski ME, Tearney GJ, Bouma BE, et al.: Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 1996, 93:1206–1213.

    PubMed  CAS  Google Scholar 

  36. Jang IK, Bouma BE, Kang DH, et al.: Identification of different coronary plaque types in living patients using optical coherence tomography. Circulation 2000, 102:II-410.

    Google Scholar 

  37. Patwari P, Weissman NJ, Boppart SA, et al.: Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am J Cardiol 2000, 85:641–644.

    Article  PubMed  CAS  Google Scholar 

  38. Konings MK, Mali WP, Viergever MA: Development of an intravascular impedance catheter for detection of fatty lesions in arteries. IEEE Trans Med Imaging 1997, 16:439–446.

    Article  PubMed  CAS  Google Scholar 

  39. Feld MS: Laser Raman spectrum of calcified human aorta [letter; comment]. Laser Surg Med 1992, 12:552.

    Article  CAS  Google Scholar 

  40. Cassis LA, Lodder RA: Near-IR imaging of atheromas in living arterial tissue. Anal Chem 1993, 65:1247–1256.

    Article  PubMed  CAS  Google Scholar 

  41. Naghavi M, John R, Naguib S, et al.: Correlation of temperature, pH, and cell density in living human atherosclerotic plaques. Eur Heart J 1999, 21:250.

    Google Scholar 

  42. Christov A, Dai E, Drangova M, et al.: Optical detection of triggered atherosclerotic plaque disruption by fluorescence emission analysis. Photochem Photobiol 2000, 72:242–252.

    Article  PubMed  CAS  Google Scholar 

  43. Spokojny AM, Serur JR, Skillman J, Spears JR: Uptake of hematoporphyrin derivative by atheromatous plaques: studies in human in vitro and rabbit in vivo. J Am Coll Cardiol 1986, 8:1387–1392.

    Article  PubMed  CAS  Google Scholar 

  44. Wong DW, Hyman S, Reese I, et al.: Scintigraphic detection of atherosclerotic plaques in rabbits with 111In-labeled hematoporphyrin derivative. Int J Rad Appl Instrum B 1989, 16:511–517.

    PubMed  CAS  Google Scholar 

  45. de Korte CL, Pasterkamp G, van der Steen AF, et al.: Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000, 102:617–623.

    PubMed  Google Scholar 

  46. Cespedes EI, de Korte CL, van der Steen AF, et al.: Intravascular elastography: principles and potentials. Semin Interv Cardiol 1997, 2:55–62.

    PubMed  CAS  Google Scholar 

  47. Fayad ZA, Fuster V, Fallon JT, et al.: Noninvasive in vivo human coronary artery lumen and wall imaging using black blood magnetic resonance imaging. Circulation 2000, 102:506–510.

    PubMed  CAS  Google Scholar 

  48. Hatsukami TS, Ross R, Polissar NL, Yuan C: Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000, 102:959–964.

    PubMed  CAS  Google Scholar 

  49. Bonk RT, Schmiedl UP, Yuan C, et al.: Time-of-flight MR angiography with Gd-DTPA hexamethylene diamine co-polymer blood pool contrast agent: comparison of enhanced MRA and conventional angiography for arterial stenosis induced in rabbits. J Magnet Reson Imag 2000, 11:638–646.

    Article  CAS  Google Scholar 

  50. Weiss CR, Arai AE, Agyenan KO, et al.: Evidence of arterial wall inflammation by MRI in patients with preclinical or established atherosclerosis. J Am Coll Cardiol 2000, 35:302.

    Google Scholar 

  51. Schmitz SA, Coupland SE, Gust R, et al.: Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 2000, 35:460–471.

    Article  PubMed  CAS  Google Scholar 

  52. Rajabi M, Chen D, Asif M, et al.: Detection of macrophage infiltration in vulnerable atherosclerotic plaque using magnetic resonance imaging contrast media: super paramagnetic iron oxide (SPIO). Am J Cardiol 2000, 86:87i.

    Google Scholar 

  53. Lauffer RB, Graham PB, Lahti KM, et al.: Direct clot detection with MRI using a novel fibrin-targeted Gadolinium agent. Circulation 2000, 102:II-375.

    Google Scholar 

  54. Cheng GC, Loree HM, Kamm RD, et al.: Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 1993, 87:1179–1187.

    PubMed  CAS  Google Scholar 

  55. Mintz GS, Popma JJ, Pichard AD, et al.: Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 1995, 91:1959–1965.

    PubMed  CAS  Google Scholar 

  56. Heussel CP, Voigtlaender T, Kauczor H, et al.: Detection of coronary artery calcifications predicting coronary heart disease: comparison of fluoroscopy and spiral CT. Eur Radiol 1998, 8:1016–1024.

    Article  PubMed  CAS  Google Scholar 

  57. Tsimikas S, Palinski W, Halpern SE, et al.: Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo [comment]. J Nucl Cardiol 1999, 6:41–53.

    Article  PubMed  CAS  Google Scholar 

  58. Newsholme P, Newsholme EA: Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochem J 1989, 261:211–218.

    PubMed  CAS  Google Scholar 

  59. Bjornheden T, Bondjers G: Oxygen consumption in aortic tissue from rabbits with diet-induced atherosclerosis. Arteriosclerosis 1987, 7:238–247.

    PubMed  CAS  Google Scholar 

  60. Helft G, Worthley SG, Zhang ZY, et al.: In vivo noninvasive serial monitoring of atherosclerotic progression and regression with FDG-PET in a rabbit model. J Am Coll Cardiol 2000, 35:493.

    Article  Google Scholar 

  61. Ridker PM, Cushman M, Stampfer MJ, et al.: Plasma concentration of C-reactive protein and risk of developing periopheral vascular disease [comment]. Circulation 1998, 97:425–428.

    PubMed  CAS  Google Scholar 

  62. Ridker PM, Hennekens CH, Buring JE, Rifai N: C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000, 342:836–843.

    Article  PubMed  CAS  Google Scholar 

  63. Drexler H, Zeiher AM, Wollschlager H, et al.: Flow-dependent coronary artery dilatation in humans. Circulation 1989, 80:466–474.

    PubMed  CAS  Google Scholar 

  64. Preik M, Lauer T, Heiss C, et al.: Automated ultrasonic measurement of human arteries for the determination of endothelial function. Ultraschall Med 2000, 21:195–198.

    Article  PubMed  CAS  Google Scholar 

  65. Slager CJ, Wentzel JJ, Schuurbiers JC, et al.: True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 2000, 102:511–516.

    PubMed  CAS  Google Scholar 

  66. Komiyama N, Berry GJ, Kolz ML, et al.: Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis: an in vitro study of human coronary arteries. Am Heart J 2000, 140:565–574.

    Article  PubMed  CAS  Google Scholar 

  67. Wentzel JJ, Whelan DM, van der Giessen WJ, et al.: Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech 2000, 33:1287–1295.

    Article  PubMed  CAS  Google Scholar 

  68. Fellner F, Blank M, Fellner C, et al.: Virtual cisternoscopy of intracranial vessels: a novel visualization technique using virtual reality. Magn Reson Imaging 1998, 16:1013–1322.

    Article  PubMed  CAS  Google Scholar 

  69. Botnar RM, Stuber M, Danias PG, et al.: A fast 3D approach for coronary MRA. J Magn Reson Imaging 1999, 10:821–825.

    Article  PubMed  CAS  Google Scholar 

  70. van Ooijen PM, Oudkerk M, van Geuns RJ, et al.: Coronary artery fly-through using electron beam computed tomography. Circulation 2000, 102:E6–10.

    PubMed  Google Scholar 

  71. Calhoun PS, Kuszyk BS, Heath DG, et al.: Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 1999, 19:745–764.

    PubMed  CAS  Google Scholar 

  72. Krams R, Wentzel JJ, Oomen JA, et al.: Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 1997, 17:2061–2065.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naghavi, M., Madjid, M., Khan, M.R. et al. New developments in the detection of vulnerable plaque. Curr Atheroscler Rep 3, 125–135 (2001). https://doi.org/10.1007/s11883-001-0048-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-001-0048-1

Keywords

Navigation