Skip to main content
Log in

An effective brain connectivity technique to predict repetitive transcranial magnetic stimulation outcome for major depressive disorder patients using EEG signals

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

One of the most effective treatments for drug-resistant Major depressive disorder (MDD) patients is repetitive transcranial magnetic stimulation (rTMS). To improve treatment efficacy and reduce health care costs, it is necessary to predict the treatment response. In this study, we intend to predict the rTMS treatment response in MDD patients from electroencephalogram (EEG) signals before starting the treatment using machine learning approaches. Effective brain connectivity of 19-channel EEG data of MDD patients was calculated by the direct directed transfer function (dDTF) method. Then, using three feature selection methods, the best features were selected and patients were classified as responders or non-responders to rTMS treatment by using the support vector machine (SVM). Results on the 34 MDD patients indicated that the Fp2 region in the delta and theta frequency bands has a significant difference between the two groups and can be used as a significant brain biomarker to assess the rTMS treatment response. Also, the highest accuracy (89.6%) using the SVM classifier for the best features of the dDTF method based on the area under the receiver operating characteristic curve (AUC-ROC) criteria was obtained by combining the delta and theta frequency bands. Consequently, the proposed method can accurately detect the rTMS treatment response in MDD patients before starting treatment on the EEG signal to avoid financial and time costs to patients and medical centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Organization WH (2017) Depression. Fact sheet No. 369. Accessed April 2017

  2. Association AP (2000) Diagnostic criteria from dsM-iV-tr. American Psychiatric Pub

    Google Scholar 

  3. Al-Harbi KS (2012) Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence 6:369

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fink M (2001) Convulsive therapy: a review of the first 55 years. J Affect Disord 63(1–3):1–15

    Article  CAS  PubMed  Google Scholar 

  5. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z et al (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62(11):1208–1216

    Article  PubMed  Google Scholar 

  6. Beuzon G, Timour Q, Saoud M (2017) Predictors of response to repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder. Encephale 43(1):3–9

    Article  CAS  PubMed  Google Scholar 

  7. Brunoni AR, Chaimani A, Moffa AH, Razza LB, Gattaz WF, Daskalakis ZJ et al (2017) Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network meta-analysis. JAMA Psychiatry 74(2):143–152

    Article  PubMed  Google Scholar 

  8. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S et al (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48(8):830–843

    Article  CAS  PubMed  Google Scholar 

  9. Milev RV, Giacobbe P, Kennedy SH, Blumberger DM, Daskalakis ZJ, Downar J et al (2016) Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: sect. 4. Neurostimulation treatments. Can J Psychiatry 61(9):561–575

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meijs H, Lin B, van Wingen G, Gordon E, Denys D, de Wilde B, van Hecke J, Niemegeers P, van Eijk K, Luykx J (2021) A polygenic-informed approach to a predictive EEG signature empowers stratified antidepressant treatment. Brain Stimul 14(6):1694–1695

    Article  Google Scholar 

  11. Bailey NW, Krepel N, van Dijk H, Leuchter AF, Vila-Rodriguez F, Blumberger DM, Downar J, Wilson A, Daskalakis ZJ, Carpenter LL (2021) Resting EEG theta connectivity and alpha power to predict repetitive transcranial magnetic stimulation response in depression: a non-replication from the ICON-DB consortium. Clin Neurophysiol 132(2):650–659

    Article  PubMed  Google Scholar 

  12. Shalbaf R, Brenner C, Pang C, Blumberger DM, Downar J, Daskalakis ZJ et al (2018) Non-linear entropy analysis in EEG to predict treatment response to repetitive transcranial magnetic stimulation in depression. Front Pharmacol 9:1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Silverstein WK, Noda Y, Barr MS, Vila-Rodriguez F, Rajji TK, Fitzgerald PB et al (2015) Neurobiological predictors of response to dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation in depression: a systematic review. Depress Anxiety 32(12):871–891

    Article  PubMed  Google Scholar 

  14. Fregni F, Marcolin MA, Myczkowski M, Amiaz R, Hasey G, Rumi DO et al (2006) Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. Int J Neuropsychopharmacol 9(6):641–654

    Article  CAS  PubMed  Google Scholar 

  15. Huang CC, Wei IH, Chou YH, Su TP (2008) Effect of age, gender, menopausal status, and ovarian hormonal level on rTMS in treatment-resistant depression. Psychoneuroendocrinology 33(6):821–831

    Article  PubMed  Google Scholar 

  16. Rostami R, Kazemi R, Nitsche MA, Gholipour F, Salehinejad M (2017) Clinical and demographic predictors of response to rTMS treatment in unipolar and bipolar depressive disorders. Clin Neurophysiol 128(10):1961–1970

    Article  PubMed  Google Scholar 

  17. Shalbaf A, Bagherzadeh S, Maghsoudi A (2020) Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys Eng Sci Med 2020:1–11

    Google Scholar 

  18. Shalbaf A, Shalbaf R, Saffar M, Sleigh J (2020) Monitoring the level of hypnosis using a hierarchical SVM system. J Clin Monit Comput 34(2):331–338

    Article  PubMed  Google Scholar 

  19. Shahabi MS, Shalbaf A, Maghsoudi A (2021) Prediction of drug response in major depressive disorder using ensemble of transfer learning with convolutional neural network based on EEG. Biocybern Biomed Eng 41(3):946–959

    Article  Google Scholar 

  20. Arns M, Meijs H, Lin B, van Wingen G, Gordon E, Denys D, De Wilde B, Van Hecke J, Niemegeers P, van Eijk K (2021) Can polygenic-informed EEG biomarkers predict differential antidepressant treatment response An EEG stratification marker for rTMS and sertraline. Res Sq. https://doi.org/10.21203/rs.3.rs-155886/v1

    Article  Google Scholar 

  21. Micoulaud-Franchi J-A, Richieri R, Cermolacce M, Loundou A, Lancon C, Vion-Dury J (2012) Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: a preliminary study. J Affect Disord 137(1–3):156–160

    Article  CAS  PubMed  Google Scholar 

  22. Arns M, Cerquera A, Gutiérrez RM, Hasselman F, Freund JA (2014) Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clin Neurophysiol 125(7):1392–1399

    Article  PubMed  Google Scholar 

  23. Corlier J, Wilson A, Hunter AM, Vince-Cruz N, Krantz D, Levitt J, Minzenberg MJ, Ginder N, Cook IA, Leuchter AF (2019) Changes in functional connectivity predict outcome of repetitive transcranial magnetic stimulation treatment of major depressive disorder. Cereb Cortex 29(12):4958–4967

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bailey N, Hoy K, Rogasch N, Thomson R, McQueen S, Elliot D, Sullivan C, Fulcher B, Daskalakis Z, Fitzgerald P (2018) Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul 11:190–203

    Article  CAS  PubMed  Google Scholar 

  25. Hasanzadeh F, Mohebbi M, Rostami R (2019) Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal. J Affect Disord 256:132–142

    Article  PubMed  Google Scholar 

  26. Hasanzadeh F, Mohebbi M, Rostami R (2020) Single channel EEG classification: a case study on prediction of major depressive disorder treatment outcome. IEEE Access 9:3417–3427

    Article  Google Scholar 

  27. Lynn CW, Bassett DS (2019) The physics of brain network structure, function and control. Nat Reviews Phys 1(5):318–332

    Article  Google Scholar 

  28. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Article  PubMed  Google Scholar 

  29. First MB (1997) Structured clinical interview for DSM-IV axis I disorders. Biometrics Research Department

    Google Scholar 

  30. Cao X, Deng C, Su X, Guo Y (2018) Response and remission rates following high-frequency vs. low-frequency repetitive transcranial magnetic stimulation (rTMS) over right DLPFC for treating major depressive disorder (MDD): a meta-analysis of randomized, double-blind trials. Front Psychiatry 2018:413

    Article  Google Scholar 

  31. Berlim MT, Van den Eynde F, Jeff Daskalakis Z (2013) Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: a meta-analysis of randomized, double-blind and sham-controlled trials. Neuropsychopharmacology 38(4):543–551

    Article  CAS  PubMed  Google Scholar 

  32. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  33. Mullen T (2012) CleanLine EEGLAB plugin. Neuroimaging Informatics Toolsand Resources Clearinghouse (NITRC), San Diego

    Google Scholar 

  34. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78

    Article  Google Scholar 

  35. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  36. Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods 125(1–2):195–207

    Article  PubMed  Google Scholar 

  37. Roffo G (2016) Feature selection library (MATLAB toolbox). arXiv preprint arXiv:160701327.

  38. Mamitsuka H (2006) Selecting features in microarray classification using ROC curves. Pattern Recogn 39(12):2393–2404

    Article  Google Scholar 

  39. Mumtaz W, Xia L, Yasin MAM, Ali SSA, Malik AS (2017) A wavelet-based technique to predict treatment outcome for major depressive disorder. PloS One. https://doi.org/10.1371/journal.pone.0171409

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  PubMed  Google Scholar 

  41. Tharwat A, Gaber T, Ibrahim A, Hassanien AE (2017) Linear discriminant analysis: a detailed tutorial. AI Commun 30(2):169–190

    Article  Google Scholar 

  42. Savas C, Dovis F (2019) The impact of different kernel functions on the performance of scintillation detection based on support vector machines. Sensors 19(23):5219

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fay MP, Proschan MA (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mullen T (2010) Source information flow toolbox (SIFT). Swartz Center for Computational Neuroscience, San Diego

    Google Scholar 

  45. Xia M, Wang J, He Y (2013) BrainNet viewer: a network visualization tool for human brain connectomics. PloS One. https://doi.org/10.1371/journal.pone.0068910

    Article  PubMed  PubMed Central  Google Scholar 

  46. He R, Fan J, Wang H, Zhong Y, Ma J (2020) Differentiating responders and Non-responders to rTMS treatment for disorder of consciousness using EEG after-effects. Front Neurol 2020:11

    Google Scholar 

  47. Ebrahimzadeh E, Asgarinejad M, Saliminia S, Ashoori S, Seraji M (2021) Predicting clinical response to, transcranial magnetic stimulation in major depression using time-frequency EEG signal processing. Biomed Eng 2021:2150048

    Google Scholar 

  48. Hunter AM, Cook IA, Leuchter AF (2007) The promise of the quantitative electroencephalogram as a predictor of antidepressant treatment outcomes in major depressive disorder. Psychiatr Clin North Am 30(1):105–124

    Article  PubMed  Google Scholar 

  49. Knott V, Mahoney C, Kennedy S, Evans K (2000) Pre-treatment EEG and it’s relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry 33(06):201–205

    Article  CAS  PubMed  Google Scholar 

  50. Korb AS, Hunter AM, Cook IA, Leuchter AF (2009) Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression. Clin Neurophysiol 120(7):1313–1319

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mulert C, Juckel G, Brunnmeier M, Karch S, Leicht G, Mergl R et al (2007) Rostral anterior cingulate cortex activity in the theta band predicts response to antidepressive medication. Clin EEG Neurosci 38(2):78–81

    Article  PubMed  Google Scholar 

  52. Simpson JR, Snyder AZ, Gusnard DA, Raichle ME (2001) Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance. Proc Natl Acad Sci 98(2):683–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeng LL, Shen H, Liu L, Hu D (2014) Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp 35(4):1630–1641

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is financially supported by "Research Department of School of Medicine Shahid Beheshti University of Medical Sciences" (Grant No 13731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shalbaf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobakhsh, B., Shalbaf, A., Rostami, R. et al. An effective brain connectivity technique to predict repetitive transcranial magnetic stimulation outcome for major depressive disorder patients using EEG signals. Phys Eng Sci Med 46, 67–81 (2023). https://doi.org/10.1007/s13246-022-01198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01198-0

Keywords

Navigation