Skip to main content
Log in

Repeatability of image features extracted from FET PET in application to post-surgical glioblastoma assessment

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) imaging using the amino acid tracer O-[2-(18F)fluoroethyl]-L-tyrosine (FET) has gained increased popularity within the past decade in the management of glioblastoma (GBM). Radiomics features extracted from FET PET images may be sensitive to variations when imaging at multiple time points. It is therefore necessary to assess feature robustness to test-retest imaging. Eight patients with histologically confirmed GBM that had undergone post-surgical test-retest FET PET imaging were recruited. In total, 1578 radiomic features were extracted from biological tumour volumes (BTVs) delineated using a semi-automatic contouring method. Feature repeatability was assessed using the intraclass correlation coefficient (ICC). The effect of both bin width and filter choice on feature repeatability was also investigated. 59/106 (55.7%) features from the original image and 843/1472 (57.3%) features from filtered images had an ICC ≥ 0.85. Shape and first order features were most stable. Choice of bin width showed minimal impact on features defined as stable. The Laplacian of Gaussian (LoG, σ = 5 mm) and Wavelet filters (HLL and LHL) significantly improved feature repeatability (p ≪ 0.0001, p = 0.003, p = 0.002, respectively). Correlation of textural features with tumour volume was reported for transparency. FET PET radiomic features extracted from post-surgical images of GBM patients that are robust to test-retest imaging were identified. An investigation with a larger dataset is warranted to validate the findings in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  3. Shukla G, Alexander GS, Bakas S, Nikam R, Talekar K, Palmer JD et al (2017) Advanced magnetic resonance imaging in glioblastoma: a review. Chin Clin Oncol 6:40

    Article  PubMed  Google Scholar 

  4. Galldiks N, Langen KJ (2017) Amino acid PET in neuro-oncology: applications in the clinic. Expert Rev Anticancer Ther 17:395–397

    Article  CAS  PubMed  Google Scholar 

  5. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  CAS  PubMed  Google Scholar 

  6. Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD et al (2021) Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 23:34

    Article  PubMed  PubMed Central  Google Scholar 

  7. Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR et al (2018) Static and dynamic (18)F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging 45:443–451

    Article  CAS  PubMed  Google Scholar 

  8. Vomacka L, Unterrainer M, Holzgreve A, Mille E, Gosewisch A, Brosch J et al (2018) Voxel-wise analysis of dynamic (18)F-FET PET: a novel approach for non-invasive glioma characterisation. EJNMMI Res 8:91

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K et al (2005) O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32:422–429

    Article  CAS  PubMed  Google Scholar 

  10. Song S, Cheng Y, Ma J, Wang L, Dong C, Wei Y et al (2020) Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur J Nucl Med Mol Imaging 47:1458–1467. https://doi.org/10.1007/s00259-019-04656-2

  11. Rapp M, Heinzel A, Galldiks N, Stoffels G, Felsberg J, Ewelt C et al (2013) Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 54:229–235

    Article  CAS  PubMed  Google Scholar 

  12. Harat M, Malkowski B, Makarewicz R (2016) Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study. Radiother Oncol 120:241–247

    Article  PubMed  Google Scholar 

  13. Niyazi M, Geisler J, Siefert A, Schwarz SB, Ganswindt U, Garny S et al (2011) FET-PET for malignant glioma treatment planning. Radiother Oncol 99:44–48

    Article  PubMed  Google Scholar 

  14. Henriksen OM, Larsen VA, Muhic A, Hansen AE, Larsson HBW, Poulsen HS et al (2016) Simultaneous evaluation of brain tumour metabolism, structure and blood volume using [(18)F]-fluoroethyltyrosine (FET) PET/MRI: feasibility, agreement and initial experience. Eur J Nucl Med Mol Imaging 43:103–112

    Article  CAS  PubMed  Google Scholar 

  15. Vees H, Senthamizhchelvan S, Miralbell R, Weber DC, Ratib O, Zaidi H (2009) Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 36:182–193

    Article  PubMed  Google Scholar 

  16. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687

    Article  PubMed  Google Scholar 

  17. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H et al (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36:779–787

    Article  CAS  PubMed  Google Scholar 

  18. Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S et al (2015) Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med 56:9–15

    Article  CAS  PubMed  Google Scholar 

  19. Poulsen SH, Urup T, Grunnet K, Christensen IJ, Larsen VA, Jensen ML et al (2017) The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 44:373–381

    Article  CAS  PubMed  Google Scholar 

  20. Galldiks N, Dunkl V, Ceccon G, Tscherpel C, Stoffels G, Law I et al (2018) Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. Eur J Nucl Med Mol Imaging 45:2377–2386

    Article  CAS  PubMed  Google Scholar 

  21. Galldiks N, Langen KJ, Holy R, Pinkawa M, Stoffels G, Nolte KW et al (2012) Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med 53:1048–1057

    Article  CAS  PubMed  Google Scholar 

  22. Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M et al (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695

    Article  CAS  PubMed  Google Scholar 

  23. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM et al (2016) Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18:1199–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM et al (2019) PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 21:585–595

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  27. Kebir S, Khurshid Z, Gaertner FC, Essler M, Hattingen E, Fimmers R et al (2017) Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma. Oncotarget 8:8294

    Article  PubMed  Google Scholar 

  28. Carles M, Popp I, Starke MM, Mix M, Urbach H, Schimek-Jasch T et al (2021) FET-PET radiomics in recurrent glioblastoma: prognostic value for outcome after re-irradiation? Radiat Oncol 16:46

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lohmann P, Elahmadawy MA, Gutsche R, Werner JM, Bauer EK, Ceccon G et al (2020) FET PET radiomics for differentiating pseudoprogression from early tumor progression in glioma patients post-chemoradiation. Cancers (Basel) 12. https://doi.org/10.3390/cancers12123835

  30. Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S et al (2018) Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin 20:537–542

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lohmann P, Lerche C, Bauer EK, Steger J, Stoffels G, Blau T et al (2018) Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 8:13328

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys Med Biol 61:R150–R166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zwanenburg A (2019) Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 46:2638–2655

    Article  PubMed  Google Scholar 

  35. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

    Article  PubMed  Google Scholar 

  36. Unterrainer M, Vettermann F, Brendel M, Holzgreve A, Lifschitz M, Zahringer M et al (2017) Towards standardization of (18)F-FET PET imaging: do we need a consistent method of background activity assessment? EJNMMI Res 7:48

    Article  PubMed  PubMed Central  Google Scholar 

  37. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B (2019) Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology. Comput Struct Biotechnol J 17:995–1008

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–e107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJ, Andrearczyk V, Apte A et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338

    Article  PubMed  Google Scholar 

  40. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 53:693–700

    Article  PubMed  Google Scholar 

  41. Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R et al (2015) The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420

    Article  CAS  PubMed  Google Scholar 

  43. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30

    Article  Google Scholar 

  44. Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys 102:1143–1158

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropractic Med 15:155–163

    Article  Google Scholar 

  46. Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55:37–42

    Article  CAS  PubMed  Google Scholar 

  47. Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44

    Article  CAS  PubMed  Google Scholar 

  48. Altazi BA, Zhang GG, Fernandez DC, Montejo ME, Hunt D, Werner J et al (2017) Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. J Appl Clin Med Phys 18:32–48

    Article  PubMed  PubMed Central  Google Scholar 

  49. van Timmeren JE, Leijenaar RTH, van Elmpt W, Wang J, Zhang Z, Dekker A et al (2016) Test-Retest Data for Radiomics Feature Stability Analysis: Generalizable or Study-Specific? Tomography 2:361–365

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gutsche R, Scheins J, Kocher M, Bousabarah K, Fink GR, Shah NJ et al (2021) Evaluation of FET PET radiomics feature repeatability in glioma patients. Cancers (Basel) 13. https://doi.org/10.3390/cancers13040647

  51. Shiri I, Hajianfar G, Sohrabi A, Abdollahi H, S PS, Geramifar P et al (2020) Repeatability of radiomic features in magnetic resonance imaging of glioblastoma: Test-retest and image registration analyses. Med Phys 47:4265–4280

    Article  PubMed  Google Scholar 

  52. Schwier M, van Griethuysen J, Vangel MG, Pieper S, Peled S, Tempany C et al (2019) Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci Rep 9:9441

    Article  PubMed  PubMed Central  Google Scholar 

  53. Peerlings J, Woodruff HC, Winfield JM, Ibrahim A, Van Beers BE, Heerschap A et al (2019) Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial. Sci Rep 9:4800

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Duan H, Zhao K, Ding Y (2019) Stability of MRI Radiomics Features of Hippocampus: An Integrated Analysis of Test-Retest and Inter-Observer Variability. IEEE Access 7:97106–97116

    Article  Google Scholar 

  55. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging 11:91

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ferjančič P, Ebert MA, Francis R, Nowak AK, Jeraj R (2021) Repeatability of quantitative 18F-FET PET in glioblastoma. Biomed Phys Eng Express 7:035020

    Article  Google Scholar 

  57. Larue R, Van De Voorde L, van Timmeren JE, Leijenaar RTH, Berbee M, Sosef MN et al (2017) 4DCT imaging to assess radiomics feature stability: An investigation for thoracic cancers. Radiother Oncol 125:147–153

    Article  PubMed  Google Scholar 

  58. Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C et al (2019) Assessing robustness of radiomic features by image perturbation. Sci Rep 9:614

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hatt M, Tixier F, Le ChezeRest C, Pradier O, Visvikis D (2013) Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40:1662–1671

    Article  PubMed  Google Scholar 

  60. van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ et al (2016) Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Mol Imaging Biol 18:788–795

    Article  PubMed  PubMed Central  Google Scholar 

  61. Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS et al (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397

    Article  CAS  PubMed  Google Scholar 

  62. Whybra P, Parkinson C, Foley K, Staffurth J, Spezi E (2019) Assessing radiomic feature robustness to interpolation in (18)F-FDG PET imaging. Sci Rep 9:9649

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Pfizer Australia and the Australian and New Zealand Society of Nuclear Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Barry.

Ethics declarations

Conflict of interest

None to declare.

Ethical Approval

The study used in this paper was performed in accordance with the “NHMRC Statement on Ethical Conduct in Human Research” (Commonwealth of Australia, 2007), the principles laid down by the 18th World Medical Assembly (Helsinki, 1964), and subsequent amendments.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 28.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barry, N., Rowshanfarzad, P., Francis, R.J. et al. Repeatability of image features extracted from FET PET in application to post-surgical glioblastoma assessment. Phys Eng Sci Med 44, 1131–1140 (2021). https://doi.org/10.1007/s13246-021-01049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01049-4

Keywords

Navigation