Skip to main content
Log in

Virtual digital subtraction angiography using multizone patch-based U-Net

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Digital subtraction angiography (DSA) is a powerful technique for visualizing blood vessels from X-ray images. However, the subtraction images obtained with this technique suffer from artifacts caused by patient motion. To avoid these artifacts, a new method called “Virtual DSA” is proposed, which generates DSA images directly from a single live image without using a mask image. The proposed Virtual DSA method was developed using the U-Net deep learning architecture. In the proposed method, a virtual DSA image only containing the extracted blood vessels was generated by inputting a single live image into U-Net. To extract the blood vessels more accurately, U-Net operates on each small area via a patch-based process. In addition, a different network was used for each zone to use the local information. The evaluation of the live images of the head confirmed accurate blood vessel extraction without artifacts in the virtual DSA image generated with the proposed method. In this study, the NMSE, PSNR, and SSIM indices were 8.58%, 33.86 dB, and 0.829, respectively. These results indicate that the proposed method can visualize blood vessels without motion artifacts from a single live image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mistretta CA, Crummy AB, Strother CM (1981) Digital angiography: a perspective. Radiology 139(2):273–276. https://doi.org/10.1148/radiology.139.2.7012918

    Article  CAS  PubMed  Google Scholar 

  2. Brody WR (1982) Digital subtraction angiography. IEEE T Nucl Sci 29(3):1176–1180. https://doi.org/10.1109/TNS.1982.4336336

    Article  Google Scholar 

  3. Takahashi M, Sato N, Fukui K, Kohrogi Y, Yamashita Y, Shinzato J, Higashida Y (1986) Hybrid digital subtraction angiography: Initial clinical experience. Computerized Radiology 10(4):147–154. https://doi.org/10.1016/0730-4862(86)90098-3

    Article  CAS  PubMed  Google Scholar 

  4. Yasuda M, Kato K, Sakiyama K, Uchiyama Y, Asanuma S, Fujimura K, Nakazawa Y (2010) Development of a prevention of body movement fixation appliance in leg digital subtraction angiography. Jpn J Radiol Technol 66(1):49–56. https://doi.org/10.6009/jjrt.66.49

    Article  Google Scholar 

  5. Bale R, Lottersberger C, Vogele M, Prassl A, Czermak B, Dessl A, Jaschke W (2002) A novel vacuum device for extremity immobilisation during digital angiography: preliminary clinical experiences. Eur Radiol 12(12):2890–2894. https://doi.org/10.1007/s00330-002-1492-1

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Zhang F, Li R (2010) DSA image registration based on 3D space-time detection. Procedia Eng 7:426–431. https://doi.org/10.1016/j.proeng.2010.11.070

    Article  Google Scholar 

  7. Levin DC, Schapiro RM, Boxt LM, Dunham L, Harrington DP, Ergun DL (1984) Digital subtraction angiography: principles and pitfalls of image improvement techniques. AJR Am J Roentgenol 143(3):447–454. https://doi.org/10.2214/ajr.143.3.447

    Article  CAS  PubMed  Google Scholar 

  8. Pickens DR, Price RR, Erickson JJ, James AE Jr (1987) Digital image motion correction by spatial warp methods. Med Phys 14(1):56–61. https://doi.org/10.1118/1.596095

    Article  CAS  PubMed  Google Scholar 

  9. Oung H, Smith AM (1984) Real time motion detection in digital subtractive angiography. Proc SPIE 0515 Med Images Icons 515:336–339. https://doi.org/10.1117/12.964782

    Article  Google Scholar 

  10. Meijering EH, Zuiderveld KJ, Viergever MA (1999) Image registration for digital subtraction angiography. Int J Comput Vision 31:227–246. https://doi.org/10.1023/A:1008074100927

    Article  Google Scholar 

  11. Buzug TM, Weese J (1998) Image registration for DSA quality enhancement. Comput Med Imaging Graph 22(2):103–113. https://doi.org/10.1016/S0895-6111(98)00012-3

    Article  CAS  PubMed  Google Scholar 

  12. Liu B, Zhao Q, Dong J, Jia X, Yue Z (2013) A stretching transform-based automatic nonrigid registration system for cerebrovascular digital subtraction angiography images. Int J Imag Syst Tech 23(2):171–187. https://doi.org/10.1002/ima.22050

    Article  Google Scholar 

  13. Lee S, Jeon CH, Sunwoo L, Oh DY, Lee KJ (2019) Phase-based nonrigid deformation for digital subtraction angiography. IEEE Access 7:32256–32265. https://doi.org/10.1109/ACCESS.2019.2902562

    Article  Google Scholar 

  14. Hariharan SG, Kaethner C, Strobel N, Kowarschik M, DiNitto J, Fahrig R, Navab N (2019) Model-based motion artifact correction in digital subtraction angiography using optical-flow. Bildverarbeitung für die Medizin 2019:146–151. https://doi.org/10.1007/978-3-658-25326-4_31

    Article  Google Scholar 

  15. Lo SB, Lou SA, Lin J, Freedman MT, Chien MV, Mun SK (1995) Artificial convolutional neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14(4):711–718. https://doi.org/10.1109/42.476112

    Article  CAS  PubMed  Google Scholar 

  16. Teramoto A, Fujita H, Yamamuro O, Tamaki T (2016) Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43(6):2821–2827. https://doi.org/10.1118/1.4948498

    Article  PubMed  Google Scholar 

  17. Cha KH, Hadjiiski L, Samala R, Chan H, Caoili EM, Cohan RH (2016) Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med Phys 43(4):1882–1896. https://doi.org/10.1118/1.4944498

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216. https://doi.org/10.1109/TMI.2016.2535865

    Article  PubMed  Google Scholar 

  19. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  PubMed  Google Scholar 

  20. Dou Q, Chen H, Yu L, Zhao L, Qin J, Wang D, Mok VCT, Shi L, Heng P (2016) Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 35(5):1182–1195. https://doi.org/10.1109/TMI.2016.2528129

    Article  Google Scholar 

  21. Samala RK, Chen H, Hadjiiski L, Helvie MA, Wei J, Cha K (2016) Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 43(12):6654–6666. https://doi.org/10.1118/1.4967345

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, Fujita H (2017) Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med 80:24–29. https://doi.org/10.1016/j.compbiomed.2016.11.003

    Article  PubMed  Google Scholar 

  23. Ghafoorian M, Karssemeijier N, Heskes T, Bergkamp M, Wissink J, Obels J, Keizer K, de Leeuw F, van Ginneken B, Marchiori E, Platel B (2017) Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. Neuroimage-Clin 14:391–399. https://doi.org/10.1016/j.nicl.2017.01.033

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582. https://doi.org/10.1148/radiol.2017162326

    Article  PubMed  Google Scholar 

  25. Han X (2107) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419. Doi: https://doi.org/10.1002/mp.12155

  26. Matsubara N, Teramoto A, Saito K, Fujita H (2020) Bone suppression for chest X-ray image using a convolutional neural filter. Phys Eng Sci Med 43:97–108. https://doi.org/10.1007/s13246-019-00822-w

    Article  Google Scholar 

  27. Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, Fujita H (2019) Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. Biomed Res Int. https://doi.org/10.1155/2019/6051939

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A, Miki Y (2019) Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 290(1):187–194. https://doi.org/10.1148/radiol.2018180901

    Article  PubMed  Google Scholar 

  29. Teramoto A, Yamada A, Kiriyama Y, Tsukamoto T, Yan K, Zhang L, Imaizumi K, Saito K, Fujita H (2019) Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network. Inf Med Unlocked 16:100205. https://doi.org/10.1016/j.imu.2019.100205

    Article  Google Scholar 

  30. Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, Fujita H (2020) Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Int J Comput Assist Radiol Surg 15(1):173–178. https://doi.org/10.1007/s11548-019-02092-z

    Article  PubMed  Google Scholar 

  31. Teramoto A, Tsukamoto T, Yamada A, Kiriyama Y, Imaizumi K, Saito K, Fujita H (2020) Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks. PLoS One 15(3):e0229951. https://doi.org/10.1371/journal.pone.0229951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Išgum I (2018) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38(7):1588–1598. https://doi.org/10.1109/TMI.2018.2883807

    Article  PubMed  Google Scholar 

  33. Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, Išgum I (2019) Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med Image Anal 51:46–60. https://doi.org/10.1016/j.media.2018.10.005

    Article  PubMed  Google Scholar 

  34. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Int Conf Med Image Comput Comput Assist Interv 9351:234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  35. Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv:1802.06955.

  36. Huang Q, Sun J, Ding H, Wang X, Wang G (2018) Robust liver vessel extraction using 3D U-Net with variant dice loss function. Comput Biol Med 101:153–162. https://doi.org/10.1016/j.compbiomed.2018.08.018

    Article  PubMed  Google Scholar 

  37. Gao Y, Song Y, Yin X, Wu W, Zhang L, Chen Y, Shi W (2019) Deep learning-based digital subtraction angiography image generation. Int J Comput Assist Radiol Surg 14(10):1775–1784. https://doi.org/10.1007/s11548-019-02040-x

    Article  PubMed  Google Scholar 

  38. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems 2:2672–2680.

  39. Song T, Song Y, Wang Y, Huang X (2018) Residual network with dense block. J Electron Imaging 27(5):053036

    Article  Google Scholar 

  40. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence 4278–4284.

  41. Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K (2014) Densenet: implementing efficient convnet descriptor pyramids. arXiv:1404.1869.

  42. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10) 807–814.

  43. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning 37:448–456. arXiv:1502.03167.

  44. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Teramoto.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures in the studies involving human participants were performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not involve any studies performed on animals by any of the authors.

Informed consent

Consent from the patients was obtained with the condition that all data are anonymized.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, R., Teramoto, A., Ohno, T. et al. Virtual digital subtraction angiography using multizone patch-based U-Net. Phys Eng Sci Med 43, 1305–1315 (2020). https://doi.org/10.1007/s13246-020-00933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00933-9

Keywords

Navigation