Skip to main content
Log in

Decision support system for breast lesions via dynamic contrast enhanced magnetic resonance imaging

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The presented study aims to design a computer-aided detection and diagnosis system for breast dynamic contrast enhanced magnetic resonance imaging. In the proposed system, the segmentation task is performed in two stages. The first stage is called breast region segmentation in which adaptive noise filtering, local adaptive thresholding, connected component analysis, integral of horizontal projection, and breast region of interest detection algorithms are applied to the breast images consecutively. The second stage of segmentation is breast lesion detection that consists of 32-class Otsu thresholding and Markov random field techniques. Histogram, gray level co-occurrence matrix and neighboring gray tone difference matrix based feature extraction, Fisher score based feature selection and, tenfold and leave-one-out cross-validation steps are carried out after segmentation to increase the reliability of the designed system while decreasing the computational time. Finally, support vector machines, k- nearest neighbor, and artificial neural network classifiers are performed to separate the breast lesions as benign and malignant. The average accuracy, sensitivity, specificity, and positive predictive values of each classifier are calculated and the best results are compared with the existing similar studies. According to the achieved results, the proposed decision support system for breast lesion segmentation distinguishes the breast lesions with 86%, 100%, 67%, and 85% accuracy, sensitivity, specificity, and positive predictive values, respectively. These results show that the proposed system can be used to support the radiologists during a breast cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee CI, Lehman CD, Bassett LW (2018) Breast imaging. Oxford University Press, Oxford

    Book  Google Scholar 

  2. World Health Organization (2019) https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Accessed 5 Mar 2019

  3. American Institute for Cancer Research Breast Cancer Statistics (2014) https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics. Accessed 5 Mar 2019

  4. T. C. Ministry of Health Public Health Agency of Turkey, Turkey Cancer Statistics (2019) https://hsgm.saglik.gov.tr/depo/birimler/kanser-db/istatistik/2014-RAPOR._uzun.pdf. Accessed 5 Mar 2019

  5. Losurdo L, Fanizzi A, Basile TM, Bellotti R, Bottigli U, Dentamaro R, et al. (2018) A combined approach of multiscale texture analysis and interest point/corner detectors for microcalcifications diagnosis. In: International conference on bioinformatics and biomedical engineering. Springer, Cham, pp 302–313. https://doi.org/10.1007/978-3-319-78723-7_26

  6. Pandey D, Yin X, Wang H, Su MY, Chen JH, Wu J, Zhang Y (2018) Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs. Heliyon 4:1–30. https://doi.org/10.1016/j.heliyon.2018.e01042

    Article  Google Scholar 

  7. Illan IA, Ramirez J, Gorriz JM (2018) Automated detection and segmentation of nonmass-enhancing breast tumors with dynamic contrast-enhanced magnetic resonance imaging. Contrast Media Mol Imaging. https://doi.org/10.1155/2018/5308517

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shokouhi SB, Fooladivanda A, Ahmadinejad N (2017) Computer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter. Eurasip J Adv Sig Process. https://doi.org/10.1186/s13634-017-0476-x

    Article  Google Scholar 

  9. Marrone S, Piantadosi G, Fusco R, Petrillo A, Sansone M, Sansone C (2016) Breast segmentation using Fuzzy C-Means and anatomical priors in DCE-MRI. In: Proceedings of the international conference on pattern recognition, pp 1472–1477. https://doi.org/10.1109/ICPR.2016.7899845

  10. Waugh SA, Purdie CA, Jordan LB, Vinnicombe S, Lerski RA (2016) Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur Radiol 26:322–330. https://doi.org/10.1007/s00330-015-3845-6

    Article  CAS  PubMed  Google Scholar 

  11. Tzalavra A, Dalakleidi K, Zacharaki EI, Tsiaparos N (2016) Comparison of multi-resolution analysis patterns for texture classification of breast tumors based on DCE-MRI. In: 7th international workshop on machine learning in medical imaging (MICCAI), pp 296–304. https://doi.org/10.1007/978-3-319-47157-0_36

  12. Honda E, Nakayama R, Koyama H, Yamashita A (2016) Computer-aided diagnosis scheme for distinguishing between benign and malignant masses in breast DCE-MRI. J Digit Imaging 29:388–393. https://doi.org/10.1007/s10278-015-9856-7

    Article  PubMed  Google Scholar 

  13. Antropova N, Huynh B, Giger M (2016) Predicting breast cancer malignancy on DCE-MRI data using pre-trained convolutional neural networks. Med Phys 43:3349–3350. https://doi.org/10.1118/1.4955674

    Article  Google Scholar 

  14. Mahrooghy M, Ashraf AB (2015) Pharmacokinetic tumor heterogeneity as a prognostic biomarker for classifying breast cancer recurrence risk. IEEE Trans Biomed Eng 62:1585–1594. https://doi.org/10.1109/TBME.2015.2395812

    Article  PubMed  Google Scholar 

  15. Commons C, License A (2015) Automatic segmentation in breast cancer using watershed algorithm. Int J Biomed Eng Sci 2:1–6

    Article  Google Scholar 

  16. Yang Q, Li L, Zheng B (2015) A new quantitative image analysis method for improving breast cancer diagnosis using DCE-MRI examinations. Med Phys 42:103–109. https://doi.org/10.1118/1.4903280

    Article  PubMed  Google Scholar 

  17. Navaei-Lavasani S, Fathi-Kazerooni A, Saligheh-Rad H, Gity M (2015) Discrimination of benign and malignant suspicious breast tumors based on semi-quantitative DCE-MRI parameters employing support vector machine. Front Biomed Technol 2:87–92

    Google Scholar 

  18. Chaudhurya B, Zhou M, Goldgof DB, Hall LO (2015) Identifying metastatic breast tumors using textural kinetic features of a contrast based habitat in DCE-MRI. Med Imaging. https://doi.org/10.1117/12.2081386

    Article  Google Scholar 

  19. Hassanien AE, Moftah H, Azar AT, Shoman M (2014) MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl Soft Comput J 14:62–71. https://doi.org/10.1016/j.asoc.2013.08.011

    Article  Google Scholar 

  20. Song H, Zhang Q, Sun F, Wang J (2014) Breast tissue segmentation on MR images using KFCM with spatial constraints. In: Proceedings of the 2014 IEEE international conference on granular computing GrC, pp 254–258. https://doi.org/10.1109/GRC.2014.6982845

  21. Al-faris AQ, Ngah UK, Ashidi N, Isa M, Shuaib IL (2014) Breast MRI tumour segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering. Soft Comput Ind Appl 223:49–60

    Google Scholar 

  22. Wang TC, Huang YH, Huang CS, Chen JH (2014) Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis. Magn Reson Imaging 32:197–205. https://doi.org/10.1016/j.mri.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Jayender J, Chikarmane S, Jolesz FA, Gombos E (2014) Automatic segmentation of invasive breast carcinomas from dynamic contrast-enhanced MRI using time series analysis. J Magn Reson Imaging 40:467–475. https://doi.org/10.1002/jmri.24394

    Article  PubMed  Google Scholar 

  24. Cai H, Peng Y, Ou C, Chen M, Li L (2014) Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR: a machine learning approach. PLoS ONE 9:873–887. https://doi.org/10.1371/journal.pone.0087387

    Article  CAS  Google Scholar 

  25. Chen JH, Chen S, Chan S, Lin M, Su MY, Wang X (2013) Template-based automatic breast segmentation on MRI by excluding the chest region. Med Phys 40:22301. https://doi.org/10.1118/1.4828837

    Article  Google Scholar 

  26. Yang Q, Li L, Zhang J, Shao G, Zhang C, Zheng B (2013) Computer-aided diagnosis of breast DCE-MRI images using bilateral asymmetry of contrast enhancement between two breasts. J Digit Imaging 27:152–160. https://doi.org/10.1007/s10278-013-9617-4

    Article  PubMed Central  Google Scholar 

  27. Wu S, Weinstein SP, Conant EF, Schnall MD, Kontos D (2013) Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Med Phys 40:042301. https://doi.org/10.1118/1.4793255

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Morrell G, Heibrun ME, Payne A, Parker DL (2013) 3D multi-parametric breast MRI segmentation using hierarchical support vector machine with coil sensitivity correction. Acad Radiol 20:137–147. https://doi.org/10.1016/j.acra.2012.08.016

    Article  PubMed  Google Scholar 

  29. Sathya DJ, Geetha K (2013) Experimental investigation of classification algorithms for predicting lesion type on breast DCE-MR images. Int J Comput Appl 82:1–8. https://doi.org/10.5120/14101-2125

    Article  Google Scholar 

  30. Sathya DJ, Geetha K (2013) Mass classification in breast DCE-MR images using an artificial neural network trained via a bee colony optimization algorithm. Sci Asia 39:294–305. https://doi.org/10.2306/scienceasia1513-1874.2013.39.294

    Article  Google Scholar 

  31. Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A (2013) Classification of small lesions in dynamic breast MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement. Mach Vis Appl 24:1371–1381. https://doi.org/10.1007/s00138-012-0456-y

    Article  Google Scholar 

  32. McClymont D, Trakic A, Mehnert A, Crozier S, Kennedy D (2013) Fully automatic lesion segmentation in breast MRI using mean-shift and graph-cuts on a region adjacency graph. J Magn Reson Imaging 39:795–804. https://doi.org/10.1002/jmri.24229

    Article  Google Scholar 

  33. Glaßer S, Niemann U, Preim B, Spiliopoulou M (2013) Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor’s most suspect region only? In: Proceedings of 26th IEEE international symposium of computing medical system, pp 77–82. https://doi.org/10.1109/CBMS.2013.6627768

  34. Wang L, Platel B, Ivanovskaya T, Harz M, Hahn HK (2012) Fully automatic breast segmentation in 3D breast MRI. In: Proceedings of international symposium of biomedical imaging, pp 1024–1027. https://doi.org/10.1109/ISBI.2012.6235732

  35. Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A (2012) Classification of small lesions in breast MRI: evaluating the role of dynamically extracted texture features through feature selection. J Med Biol Eng 33:59–68. https://doi.org/10.5405/jmbe.1183

    Article  Google Scholar 

  36. Hassanien AE, Kim TH (2012) Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks. J Appl Log 10:277–284. https://doi.org/10.1016/j.jal.2012.07.003

    Article  Google Scholar 

  37. Fusco R, Sansone M, Petrillo A, Sansone C (2012) A multiple classifier system for classification of breast lesions using dynamic and morphological features in DCE-MRI. Lect Notes Comput Sci 7626:684–692

    Article  Google Scholar 

  38. Vignati A, Giannini V, De Luca M, Voral L (2011) Performance of a fully automatic lesion detection system for breast DCE-MRI. J Magn Reson Imaging 34:1341–1351. https://doi.org/10.1002/jmri.22680

    Article  PubMed  Google Scholar 

  39. Kannan SR, Ramathilagam S, Devi R, Sathya A (2011) Robust kernel FCM in segmentation of breast medical images. Expert Syst Appl 38:4382–4389. https://doi.org/10.1016/j.eswa.2010.09.107

    Article  Google Scholar 

  40. Agner SC, Soman S, Libfeld E, McDonald M (2011) Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J Digit Imaging 24:446–463. https://doi.org/10.1007/s10278-010-9298-1

    Article  PubMed  Google Scholar 

  41. Giannini V, Vignati A, Morra L, Persano D (2010) A fully automatic algorithm for segmentation of the breasts in DCE-MR images. In: Annual international conferences of the IEEE engineering in medicine and biology society in EMBC, pp 3146–3149. https://doi.org/10.1109/IEMBS.2010.5627191

  42. Lee SH, Kim JH, Cho N, Yang Z (2010) Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI. Med Phys 37:3940–3956. https://doi.org/10.1118/1.3446799

    Article  PubMed  Google Scholar 

  43. Dyck DV, Backer SD, Juntu J, Sijbers J, Rajan J (2010) Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. J Magn Reson Imaging 31:680–689. https://doi.org/10.1002/jmri.22095

    Article  PubMed  Google Scholar 

  44. Newstead GM, Lan L, Giger ML, Li H, Jansen SA, Bhooshan N (2010) Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers. Radiology 254:680–690. https://doi.org/10.1148/radiol.09090838

    Article  PubMed  PubMed Central  Google Scholar 

  45. Manuscript A, Levman J, Leung T, Causer P, Martel AL (2010) Resonance breast lesions by support vector machines. IEEE Trans Med Imaging 27:688–696. https://doi.org/10.1109/TMI.2008.916959

    Article  Google Scholar 

  46. Zheng Y, Englander S (2009) STEP: Spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med Phys 36:3192–3204. https://doi.org/10.1118/1.3151811

    Article  PubMed  PubMed Central  Google Scholar 

  47. Newell D, Nie K, Chen JH, Hsu CC (2009) Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement. Eur Radiol 20:771–781. https://doi.org/10.1007/s00330-009-1616-y

    Article  PubMed  PubMed Central  Google Scholar 

  48. McLaren CE, Chen WP, Nie K, Su MY (2009) Prediction of malignant breast lesions from MRI features: a comparison of artificial neural network. Acad Radiol 16:842–851. https://doi.org/10.1016/j.acra.2009.01.029

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee SH, Kim JH, Park JS, Jung YS, Moon WK (2009) Characterizing time-intensity curves for spectral morphometric analysis of intratumoral enhancement patterns in breast DCE-MRI: comparison between differentiation performance of temporal model parameters based on DFT AND SVD. In: IEEE international symposium on biomedical imaging: from nano to macro, ISBI 2009, pp 65–68. https://doi.org/10.1109/ISBI.2009.5192984

  50. Furman-Haran E, Eyal E, Kirshenbaum KJ, Kelcz F, Degani H, Badikhi D (2009) Principal component analysis of breast DCE-MRI adjusted with a model-based method. J Magn Reson Imaging 30:989–998. https://doi.org/10.1002/jmri.21950

    Article  PubMed  PubMed Central  Google Scholar 

  51. Agner SC, Xu J, Fatakdavala H, Ganesan S (2009) Segmentation and classification of triple negative breast cancers using DCE-MRI. In: Proceedings of 2009 IEEE international symposium on biomedical imaging: from nano to macro, ISBI 2009, pp 1227–1230. https://doi.org/10.1109/ISBI.2009.5193283

  52. Twellmann T, Romeny BT (2008) Computer-aided classification of lesions by means of their kinetic signatures in dynamic contrast-enhanced MR images. Proc SPIE. https://doi.org/10.1117/12.769651

    Article  Google Scholar 

  53. Mayerhoefer ME, Breitenseher M, Amann G, Dominkus M (2008) Are signal intensity and homogeneity useful parameters for distinguishing between benign and malignant soft tissue masses on MR images. Magn Reson Imaging 26:1316–1322. https://doi.org/10.1016/j.mri.2008.02.013

    Article  PubMed  Google Scholar 

  54. Lee SH, Kim JH, Park JS, Chang CM (2008) Computerized segmentation and classification of breast lesions using perfusion volume fractions in dynamic contrast-enhanced MRI. Biomed Eng Inform New Dev Futur 2:58–62. https://doi.org/10.1109/BMEI.2008.215

    Article  Google Scholar 

  55. Ertaş G, Gülçür HÖ, Osman O, Uçan ON, Tunaci M, Dursun M (2008) Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching. Comput Biol Med 38:116–126. https://doi.org/10.1016/j.compbiomed.2007.08.001

    Article  PubMed  Google Scholar 

  56. Woods BJ, Clymer BD, Kurc T, Heverhagen JT (2007) Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data. J Magn Reson Imaging 25:495–501. https://doi.org/10.1002/jmri.20837

    Article  PubMed  Google Scholar 

  57. Meinel LA, Stolpen AH, Berbaum KS, Fajardo LL, Reinhardt JM (2007) Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system. J Magn Reson Imaging 25:89–95. https://doi.org/10.1002/jmri.20794

    Article  PubMed  Google Scholar 

  58. Khazen M, Leach MO, Hawkes DJ, Tanner C, Kessar P (2006) Does registration improve the performance of a computer aided diagnosis system for dynamic contrast-enhanced MR mammography? In: 3rd IEEE international symposium biomedical imaging nano to macro, pp 466–469. https://doi.org/10.1109/ISBI.2006.1624954

  59. Leinsinger G, Schlossbauer T, Scherr M, Lange O, Reiser M, Wismüller A (2006) Cluster analysis of signal-intensity time course in dynamic breast MRI: does unsupervised vector quantization help to evaluate small mammographic lesions? Eur Radiol 16:1138–1146. https://doi.org/10.1007/s00330-005-0053-9

    Article  PubMed  Google Scholar 

  60. Chen W, Giger ML, Bick U, Newstead GM (2006) Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Med Phys 33:2878–2887. https://doi.org/10.1118/1.2210568

    Article  PubMed  Google Scholar 

  61. Xiaohua C, Brady M, Lo JJ (2005) Simultaneous segmentation and registration of contrast-enhanced breast MRI. Inf Process Med Imaging 3565:31–59

    Google Scholar 

  62. Arbach L, Stolpen A, Reinhardt JM (2004) Classification of breast MRI lesions using a backpropagation neural network (BNN). In: IEEE international symposium on biomedical imaging nano to macro (IEEE cat no. 04EX821), pp 253–256. https://doi.org/10.1109/ISBI.2004.1398522

  63. Vomweg TW, Buscema M, Kauczor HU, Teifke A (2003) Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys 30:2350–2359. https://doi.org/10.1118/1.1600871

    Article  CAS  PubMed  Google Scholar 

  64. Tzacheva AA, Najarian K, Brockway JP (2003) Breast cancer detection in gadolinium-enhanced MR images by static region descriptors and neural networks. J Magn Reson Imaging 17:337–342. https://doi.org/10.1002/jmri.10259

    Article  PubMed  Google Scholar 

  65. Lucht R, Delorme S, Brix G (2002) Neural network-based segmentation of dynamic MR mammographic images. Magn Res Imaging 20:147–154. https://doi.org/10.1016/S0730-725X(02)00464-2

    Article  Google Scholar 

  66. Abdolmaleki P, Buadu LD, Naderimansh H (2001) Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett 171:183–191. https://doi.org/10.1016/s0304-3835(01)00508-0

    Article  CAS  PubMed  Google Scholar 

  67. Vergnaghi D, Monti A, Setti E, Musumeci R (2001) A use of a neural network to evaluate contrast enhancement curves in breast magnetic resonance images. J Digit Imaging 14:58–59. https://doi.org/10.1007/bf03190297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deng H, Clausi DA (2004) Unsupervised image segmentation using a simple MRF model with a new implementation scheme. Pattern Recogn 37:2323–2335. https://doi.org/10.1016/j.patcog.2004.04.015

    Article  Google Scholar 

  69. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  70. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  71. Bishop CM (2006) Pattern recognition and machine learning. BMEI, New York

    Google Scholar 

  72. Duda RO, Hart PE, Stark DG (2001) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  73. Haykin S (2009) Neural networks and learning machines. Prentice Hall, Upper Saddle River

    Google Scholar 

  74. Evgeniou T, Pentil M (2001) Support vector machines: theory and applications machine learning and its applications advanced lectures. Mach Learn Its Appl. https://doi.org/10.1007/3-540-44673-7_12

    Article  Google Scholar 

  75. Piantadosi G, Marrone S, Fusco R, Sansone M, Sansone C (2018) Comprehensive computer-aided diagnosis for breast T1-weighted DCE-MRI through quantitative dynamical features and spatio-temporal local binary patterns. IET Comput Vis 12:1007–1017

    Article  Google Scholar 

  76. Fooladivanda A, Shokouki BS, Ahmedinejad N, Mosaui MR (2015) Automatic segmentation of breast and fibroglandular tissue in MRI using local adaptive thresholding. ICMBE 2015:195–200. https://doi.org/10.1049/iet-cvi.2018.5273

    Article  Google Scholar 

  77. Gül S, Çetinel G (2017) Detection of lesion boundaries in breast magnetic resonance imaging with OTSU thresholding and fuzzy C-means. ICAT 2017:1–5

    Google Scholar 

  78. Marrone S, Pantodosi G, Fusco R, Sansone M, Sansone C (2017) An investigation of deep learning for lesions malignancy classification in breast DCE-MRI. In: International conference on image analysis and processing, pp 479–489. https://doi.org/10.1007/978-3-319-68548-9_44

  79. Losurdo L, Basile TMA, Fanizzi A, Bellotti R, Bottigli U, Carbonara R et al (2018) A gradient-based approach for breast DCE-MRI analysis. Biomed Res Int. https://doi.org/10.1155/2018/9032408

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökçen Çetinel.

Ethics declarations

Conflict of interest

Authors Dr. Gökçen Çetinel is the coordinator, Dr. Fuldem Mutlu is the researcher and Sevda Gül is the scholarship student in the project that is supported by The Scientific and Technical Research Council of Turkey (TUBITAK) through The Research Support Programs Directorate (ARDEB) with Project Number of 118E201.

Ethical approval

The study was approved by the Ethical Committee of Sakarya University Medical Sciences Faculty. All procedures in studies involving human participants were in accordance with the ethical standards of the institutional and/or national search committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetinel, G., Mutlu, F. & Gül, S. Decision support system for breast lesions via dynamic contrast enhanced magnetic resonance imaging. Phys Eng Sci Med 43, 1029–1048 (2020). https://doi.org/10.1007/s13246-020-00902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00902-2

Keywords

Navigation