Skip to main content

Advertisement

Log in

Cluster analysis of signal-intensity time course in dynamic breast MRI: does unsupervised vector quantization help to evaluate small mammographic lesions?

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

We examined whether neural network clustering could support the characterization of diagnostically challenging breast lesions in dynamic magnetic resonance imaging (MRI). We examined 88 patients with 92 breast lesions (51 malignant, 41 benign). Lesions were detected by mammography and classified Breast Imaging and Reporting Data System (BIRADS) III (median diameter 14 mm). MRI was performed with a dynamic T1-weighted gradient echo sequence (one precontrast and five postcontrast series). Lesions with an initial contrast enhancement ≥50% were selected with semiautomatic segmentation. For conventional analysis, we calculated the mean initial signal increase and postinitial course of all voxels included in a lesion. Secondly, all voxels within the lesions were divided into four clusters using minimal-free-energy vector quantization (VQ). With conventional analysis, maximum accuracy in detecting breast cancer was 71%. With VQ, a maximum accuracy of 75% was observed. The slight improvement using VQ was mainly achieved by an increase of sensitivity, especially in invasive lobular carcinoma and ductal carcinoma in situ (DCIS). For lesion size, a high correlation between different observers was found (R2 = 0.98). VQ slightly improved the discrimination between malignant and benign indeterminate lesions (BIRADS III) in comparison with a standard evaluation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hollingsworth AB, Stough RG (2003) The emerging role of breast magnetic resonance imaging. J Okla State Med Assoc 96(7):299–307

    PubMed  Google Scholar 

  2. Baum F, Fischer U, Vosshenrich R, Grabbe E (2002) Classification of hypervascularized lesions in CE MR imaging of the breast. Eur Radiol 12:1087–1092

    Article  PubMed  CAS  Google Scholar 

  3. Fischer U, von Heyden D, Vosshenrich I, Vieweg I, Grabbe E (1993) Signal characteristics of malignant and benign lesions in dynamic 2D-MRT of the breast [German]. RöFo 158(4): 287–292

    PubMed  CAS  Google Scholar 

  4. Heywang-Kobrunner SH, Bick U, Bradley WG Jr, Bone B, Casselman J, Coulthard A, Fischer U, Muller-Schimpfle M, Oellinger H, Patt R, Teubner J, Friedrich M, Newstead G, Holland R, Schauer A, Sickles EA, Tabar L, Waisman J, Wernecke KD (2001) International investigation of breast MRI: results of a multicentre study (11 sites) concerning diagnostic parameters for contrast-enhanced MRI based on 519 histopathologically correlated lesions. Eur Radiol 11(4): 531–546

    Article  PubMed  CAS  Google Scholar 

  5. Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild, HH (1999). Dynamic Breast MR Imaging: Are Signal Intensity Time Course Data Useful for Differential Diagnosis of Enhancing Lesions? Radiology 211:101–110

    PubMed  CAS  Google Scholar 

  6. Wismueller A, Dersch DR, Lipinski B, Hahn K, Auer D (1998) A neural network approach to functional MRI pattern analysis—clustering of time-series by hierarchical vector quantization. In: Niklasson L, Boden M, Ziemke T (eds) Perspectives in neural computing. Springer, Berlin Heidelberg New York, pp 123–128

    Google Scholar 

  7. Wismüller A, Lange O, Dersch DR, Leinsinger GL, Hahn K, Pütz B, Auer D (2002) Cluster analysis of biomedical image time-series. Int J Computer Vision 46(2):103–128

    Article  Google Scholar 

  8. Vomweg TW, Buscema M, Kauczor HU (2003) Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys 30(9):2350–2359

    Article  PubMed  CAS  Google Scholar 

  9. Vomweg TW, Teifke A, Kauczor HU, Achenbach T, Rieker O, Schreiber WG, Heitmann KR, Beier T, Thelen M (2005) Self-organizing neural networks for automatic detection and classification of contrast (media) enhancement of lesions in dynamic MR-mammography. Rofo 177(5):703–713

    PubMed  CAS  Google Scholar 

  10. Dersch DR. Eigenschaften neuronaler Vektorquantisierer und ihre Anwendung in der Sprachverarbeitung. Verlag Harri Deutsch, Reihe Physik 1996 (54). ISBN 3–8171–1492–3

  11. Rose K, Gurewitz E, Fox G (1990) A deterministic annealing approach to clustering. Pattern Recognition Letters 11:589–594

    Article  Google Scholar 

  12. Rose K, Gurewitz E, Fox GC (1992) Vector Quantization by Deterministic Annealing. IEEE Transactions on Information Theory 4:1249–1257

    Article  Google Scholar 

  13. Heywang-Köbrunner SH, Viehweg P, Heinig A, Kuchler C.(1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108

    Article  PubMed  Google Scholar 

  14. Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170:681

    PubMed  CAS  Google Scholar 

  15. Harms SE, Flamig DP, Hesley KL, Meiches MD, Jensen RA , Evans WP, Savino DA, Wells RV (1993). MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology 87:493–501

    Google Scholar 

  16. Orel SG, Mendonca MH, Reynolds C, Schnall MD, Solin LJ, Sullivan DC (1997) MR imaging of ductal carcinoma in situ. Radiology 202:413–420

    PubMed  CAS  Google Scholar 

  17. Orel SG, Schnall MD, Powell CM, Hochmann MG, Solin LJ, Fowble BL, Torosian MH, Rosario EF (1995) Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy. Radiology 196:115–122

    PubMed  CAS  Google Scholar 

  18. Kuhl CK, Bieling H, Gieseke J (1997) Healthy premenopausal breast parenchyma in dynamic contrast-enhanced MR imaging of the breast: Normal contrast medium enhancement and cyclical-phase dependency. Radiology 203:137–144

    PubMed  CAS  Google Scholar 

  19. Müller-Schimpfle M, Ohmenhäuser K, Stoll P (1997) Menstrual cycle and age: influence on parenchymal contrast medium enhancement in MR imaging of the breast. Radiology 203:145–149

    PubMed  Google Scholar 

  20. Gilles R, Guinebretiere JM, Lucidarme O (1994) Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MR imaging. Radiology 191:625–631

    PubMed  CAS  Google Scholar 

  21. Kuhl CK, Seibert C, Sommer T, Kreft B, Gieseke J, Schild HH (1995) Focal and diffuse lesions in dynamic MR-mammography of healthy probands. RöFo 163(3):219–224

    PubMed  CAS  Google Scholar 

  22. Krishnan S, Chenevert TL, Helvie MA, Londy FL (1999) Linear motion correction in three dimensions applied to dynamic gadolinium enhanced breast imaging. Med Phys 26(5):707–714

    Article  PubMed  CAS  Google Scholar 

  23. Zuo CS, Jiang A, Buff BL, Mahon TG, Wong TZ (1996) Automatic motion correction for breast MR imaging. Radiology 198(3):903–906

    PubMed  CAS  Google Scholar 

  24. Erwin E, Obermayer K, Schulten K (1992) Self-organizing maps: Stationary states, metastability, and convergence rate. Biol Cyber 61:35–45

    Article  Google Scholar 

  25. Graepel T, Burger M, Obermayer K (1997) Phase transitions in stochastic self-organizing maps. Physical Review E 56 (4):3876–3890

    Article  CAS  Google Scholar 

  26. Mussurakis S, Buckley DL, Bowsley SJ, Carleton PJ, Fox JN, Turnbull LW, Horsman A (1995) Dynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma. Invest Radiol 30(11):650–662

    Article  PubMed  CAS  Google Scholar 

  27. Liu PF, Debatin JF, Caduff RF, Kacl G, Garzoli E, Krestin GP (1998) Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis. Br J Radiol 71(845):501–509

    PubMed  CAS  Google Scholar 

  28. Kuhl CK (2000) MRI of breast tumors. European Radiology 10:46–58

    Article  PubMed  CAS  Google Scholar 

  29. Fischer U, Westerhof JP, Brinck U, Korabiowska M, Schauer A, Grabbe E (1996) Ductal carcinoma in situ in dynamic MR-mammography at 1.5 T. Röfo 164(4):290–294

    PubMed  CAS  Google Scholar 

  30. Sittek H, Kessler M, Heuck AF, Bredl T, Perlet C, Kunzer I, Lebeau A, Untch M, Reiser M (1997) Morphology and contrast enhancement of ductal carcinoma in situ in dynamic 1.0 T MR mammography. RöFo 167(3):247–251

    PubMed  CAS  Google Scholar 

  31. Westerhof JP, Fischer U, Moritz JD, Oestmann JW (1998) MR imaging of mammographically detected clustered microcalcifications: is there any value? Radiology 207(3):675–681

    PubMed  CAS  Google Scholar 

  32. Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C (2005). Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol 15:2010–2017

    Article  PubMed  CAS  Google Scholar 

  33. C. Szabó BK, Wiberg MK, Boné B, Aspelin P (2004). Application of artificial neural networks to the analysis of dynamic MR imaging features of the breast. Eur Radiol 14:1217–1225

    Article  PubMed  Google Scholar 

  34. Lucht RAE, Knopp MV, Brix G (2001) Classification of signal-time curves from dynamic MR mammography by neural networks. Magn Reson Imaging 19:51–57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schlossbauer.

Additional information

G. Leinsinger and A. Wismüller have contributed equally in the research and preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinsinger, G., Schlossbauer, T., Scherr, M. et al. Cluster analysis of signal-intensity time course in dynamic breast MRI: does unsupervised vector quantization help to evaluate small mammographic lesions?. Eur Radiol 16, 1138–1146 (2006). https://doi.org/10.1007/s00330-005-0053-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-0053-9

Keywords

Navigation