Skip to main content
Log in

Relative dosimetry measurements in kilovoltage X-rays with OSLDs

  • Scientific Note
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Dosimetry for kilovoltage X-ray units requires a careful choice of equipment due a typically high energy dependence of standard detectors. The use of optically stimulated luminescence detectors (OSLDs) for in-vivo dosimetry and the measurement of relative output factors is investigated in this study. Supralinearity and the suitability of OSLDs for relative dose measurements are determined for the Landauer nanoDot OSLD system (Landauer, Inc., Greenwood, IL). OSLDs were found to exhibit supralinearity for therapeutic doses in kV X-rays, with the effect more pronounced in lower energy beams. Relative lead cutout factors measured with OSLDs were well within 5% of published values. OSLD measurements of applicator factors at the surface of a water phantom showed a systematic offset (> + 5%) to derived values and values measured with a PTW 23342 soft X-ray ionisation chamber (PTW, Freiburg, Germany), due to the change in source-to-skin distance (SSD) between the applicators used in this study. OSLDs are suitable for relative dosimetry in kilovoltage beams between 80 and 120 kVp when the SSD similar to the calibration/reference conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Cognetta AB, Howard BM, Heaton HP, Stoddard ER, Hong HG, Green WH (2012) Superficial X-ray in the treatment of basal and squamous cell carcinomas: a viable option in select patients. J Am Acad Dermatol 67:1235–1241. https://doi.org/10.1016/j.jaad.2012.06.001

    Article  PubMed  Google Scholar 

  2. Palmer AL, Pearson M, Whittard P, McHugh KE, Eaton DJ (2016) Current status of kilovoltage (kV) radiotherapy in the UK: installed equipment, clinical workload, physics quality control and radiation dosimetry. Br J Radiol 89:20160641. https://doi.org/10.1259/bjr.20160641

    Article  PubMed  PubMed Central  Google Scholar 

  3. Radiation Oncology Tripartite Committee (2012) Radiation Oncology Tripartite National Strategic Plan 2012–2022

  4. Wolstenholme V, Registrar S, Oncologist CC, Hospital RM, Glees JP, Registrar S, Oncologist CC, Hospital RM (2006) The role of kilovoltage X-rays in the treatment of skin cancers. Eur Oncol Haematol. https://doi.org/10.17925/EOH.2006.0.1.32

    Article  Google Scholar 

  5. Hill R, Kuncic Z, Baldock C (2010) The water equivalence of solid phantoms for low energy photon beams: water equivalence of phantoms for low energy photons. Med Phys 37:4355–4363. https://doi.org/10.1118/1.3462558

    Article  CAS  PubMed  Google Scholar 

  6. Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014) Advances in kilovoltage X-ray beam dosimetry. Phys Med Biol 59:R183–R231. https://doi.org/10.1088/0031-9155/59/6/R183

    Article  PubMed  Google Scholar 

  7. Fletcher CL, Mills JA (2008) An assessment of GafChromic film for measuring 50 kV and 100 kV percentage depth dose curves. Phys Med Biol 53:N209–N218. https://doi.org/10.1088/0031-9155/53/11/N02

    Article  PubMed  Google Scholar 

  8. Hewson EA, Butson MJ, Hill R (2018) Evaluating TOPAS for the calculation of backscatter factors for low energy X-ray beams. Phys Med Biol 63:195014. https://doi.org/10.1088/1361-6560/aadf28

    Article  CAS  PubMed  Google Scholar 

  9. Mart CJ, Elson HR, Lamba MAS (2012) Measurement of low-energy backscatter factors using GAFCHROMIC film and OSLDs. J Appl Clin Med Phys 13:3832

    Article  Google Scholar 

  10. Cheung T, Butson MJ, Yu PKN (2003) MOSFET dosimetry in-vivo at superficial and orthovoltage X-ray energies. Australas Phys Eng Sci Med 26:82–84

    Article  CAS  Google Scholar 

  11. Ehringfeld C, Schmid S, Poljanc K, Kirisits C, Aiginger H, Georg D (2005) Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic X-ray range from 80 to 250 kV. Phys Med Biol 50:289–303

    Article  Google Scholar 

  12. Ferguson S, Ostwald P, Kron T, Denham J (1995) Verification of surface dose on patients undergoing low to medium energy X-ray therapy. Med Dosim 20:161–165. https://doi.org/10.1016/0958-3947(95)00009-L

    Article  CAS  PubMed  Google Scholar 

  13. Butson MJ, Cheung T, Yu PKN, Price S, Bailey M (2008) Measurement of radiotherapy superficial X-ray dose under eye shields with radiochromic film. Phys Med 24:29–33. https://doi.org/10.1016/j.ejmp.2007.11.001

    Article  PubMed  Google Scholar 

  14. Jursinic PA (2007) Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements: optically stimulated luminescent dosimeters for clinical dosimetric measurements. Med Phys 34:4594–4604. https://doi.org/10.1118/1.2804555

    Article  PubMed  Google Scholar 

  15. Hu B, Wang Y, Zealey W (2009) Performance of Al2O3: C optically stimulated luminescence dosimeters for clinical radiation therapy applications. Australas Phys Eng Sci Med 32:226–232

    Article  CAS  Google Scholar 

  16. Alvarez P, Kry SF, Stingo F, Followill D (2017) TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration. Radiat Meas 106:412–415. https://doi.org/10.1016/j.radmeas.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reft CS (2009) The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams: energy dependence of optically stimulated luminescent detector. Med Phys 36:1690–1699. https://doi.org/10.1118/1.3097283

    Article  CAS  PubMed  Google Scholar 

  18. Poirier Y, Kuznetsova S, Villarreal-Barajas JE (2018) Characterization of nanoDot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40–300 kVp energy range. Med Phys 45:402–413

    Article  CAS  Google Scholar 

  19. Butson M, Haque M, Smith L, Butson E, Odgers D, Pope D, Gorjiana T, Whitaker M, Morales J, Hong A, Hill R (2017) Practical time considerations for optically stimulated luminescent dosimetry (OSLD) in total body irradiation. Australas Phys Eng Sci Med 40:167–171. https://doi.org/10.1007/s13246-016-0504-4

    Article  PubMed  Google Scholar 

  20. Ma C-M, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, Seuntjens JP (2001) AAPM protocol for 40–300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med Phys 28:868–893. https://doi.org/10.1118/1.1374247

    Article  CAS  PubMed  Google Scholar 

  21. Healy BJ, Gibbs A, Murry RL, Prunster JE, Nitschke KN (2005) Output factor measurements for a kilovoltage X-ray therapy unit. Australas Phys Eng Sci Med 28:115–121. https://doi.org/10.1007/BF03178702

    Article  CAS  PubMed  Google Scholar 

  22. Li XA, Ma CM, Salhani D (1997) Measurement of percentage depth dose and lateral beam profile for kilovoltage X-ray therapy beams. Phys Med Biol 42:2561

    Article  CAS  Google Scholar 

  23. Sheu R-D, Powers A, Lo Y-C (2015) Commissioning a 50–100 kV X-ray unit for skin cancer treatment. J Appl Clin Med Phys 16:161–174. https://doi.org/10.1120/jacmp.v16i2.5182

    Article  PubMed Central  Google Scholar 

  24. Ramaseshan R, Kohli K, Cao F, Heaton R (2008) Dosimetric evaluation of plastic water diagnostic therapy. J Appl Clin Med Phys 9:98–111. https://doi.org/10.1120/jacmp.v9i2.2761

    Article  PubMed Central  Google Scholar 

  25. Lye JE, Butler DJ, Webb DV (2010) Enhanced epidermal dose caused by localized electron contamination from lead cutouts used in kilovoltage radiotherapy: enhanced epidermal dose from lead cutouts. Med Phys 37:3935–3939. https://doi.org/10.1118/1.3458722

    Article  CAS  PubMed  Google Scholar 

  26. Lee CHM, Chan KKD (2000) Electron contamination from the lead cutout used in kilovoltage radiotherapy. Phys Med Biol 45:1–8. https://doi.org/10.1088/0031-9155/45/1/301

    Article  CAS  PubMed  Google Scholar 

  27. Dowdell S, Tyler M, McNamara J, Sloan K, Ceylan A, Rinks A (2016) Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers. Phys Med Biol 61:8395–8407. https://doi.org/10.1088/0031-9155/61/23/8395

    Article  CAS  PubMed  Google Scholar 

  28. Hill R, Healy B, Butler D, Odgers D, Gill S, Lye J, Gorjiara T, Pope D, Hill B (2018) Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine. Australas Phys Eng Sci Med 41:781–808. https://doi.org/10.1007/s13246-018-0692-1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew McGrath.

Ethics declarations

Conflict of interest

Andrew McGrath declares that he has no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGrath, A. Relative dosimetry measurements in kilovoltage X-rays with OSLDs. Phys Eng Sci Med 43, 289–295 (2020). https://doi.org/10.1007/s13246-020-00845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00845-8

Keywords

Navigation