Skip to main content
Log in

Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine

  • ACPSEM Position Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Radiation Oncology Specialty Group (ROSG) formed a series of working groups to develop recommendations for guidance of radiation oncology medical physics practice within the Australasian setting. These recommendations provide a standard for safe work practices and quality control. It is the responsibility of the medical physicist to ensure that locally available equipment and procedures are sufficiently sensitive to establish compliance. The recommendations are endorsed by the ROSG, have been subject to independent expert reviews and have also been approved by the ACPSEM Council. For the Australian audience, these recommendations should be read in conjunction with the Tripartite Radiation Oncology Practice Standards and should be read in conjunction with relevant national, state or territory legislation which take precedence over the ACPSEM publication Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group, RANZCR, 2011a; Kron et al. Clin Oncol 27(6):325–329, 2015; Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group, RANZCR, 2018a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AAPM:

American Association of Physicists in Medicine

ACPSEM:

Australasian College of Physical Scientists and Engineers in Medicine

AF:

Applicator factor

ARPANSA:

Australian Radiation Protection and Nuclear Safety Agency

BJR:

British Journal of Radiology

BSF:

Backscatter factor

CAPCA:

Canadian Association of Provincial Cancer Agencies

CCTV:

Closed circuit television

COMP:

Canadian Organization of Medical Physicists

FSD:

Focus-surface distance

Gy:

Gray, unit of absorbed dose (J/kg)

HVL:

Half value layer

IAEA TRS:

International Atomic Energy Agency Technical Reports Series

IPEMB:

Institution of Physics and Engineering in Medicine and Biology

ISL:

Inverse square law

NRL:

National Radiation Laboratory (now NCRS)

NCRS:

National Centre for Radiation Science

OSLD:

Optically Stimulated Luminescent Dosimeter

PDD:

Percentage depth dose

QA:

Quality assurance

ROF:

Relative output factor

ROMP:

Radiation Oncology Medical Physicist

ROSG:

Radiation Oncology Specialty Group

SCD:

Source-chamber distance

SSD:

Source-surface distance

TG:

Task group

TLD:

Thermoluminescent dosimetry

References

  1. Caccialanza M, Piccinno R, Percivalle S, Rozza M (2009) Radiotherapy of carcinomas of the skin overlying the cartilage of the nose: our experience in 671 lesions. J Eur Acad Dermatol Venereol 23(9):1044–1049

    CAS  PubMed  Google Scholar 

  2. Poen JC (1999) Clinical applications of orthovoltage radiotherapy: tumours of the skin, endorectal therapy and intraoperative radiation therapy. Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, Wisconsin

    Google Scholar 

  3. Locke J, Karimpour S, Young G, Lockett MA, Perez CA (2001) Radiotherapy for epithelial skin cancer. Int J Radiat Oncol Biol Phys 51(3):748–755

    CAS  PubMed  Google Scholar 

  4. Amdur RJ, Kalbaugh KJ, Ewald LM, Parsons JT, Mendenhall WM, Bova FJ, Million RR (1992) Radiation therapy for skin cancer near the eye: kilovoltage X-rays versus electrons. Int J Radiat Oncol Biol Phys 23(4):769–779

    CAS  PubMed  Google Scholar 

  5. Tracey E, Ling Li L, Baker D, Dobrovic A, Bishop J (2007) Cancer in New South Wales: incidence and mortality 2007. Cancer Institute NSW, Eveleigh

    Google Scholar 

  6. Eaton DJ, Duck S (2010) Dosimetry measurements with an intra-operative X-ray device. Phys Med Biol 55(12):N359–N369

    CAS  PubMed  Google Scholar 

  7. Eaton DJ, Barber E, Ferguson L, Mark Simpson G, Collis CH (2012) Radiotherapy treatment of keloid scars with a kilovoltage X-ray parallel pair. Radiother Oncol 102(3):421–423. https://doi.org/10.1016/j.radonc.2011.08.002

    Article  PubMed  Google Scholar 

  8. Doornbos JF, Stoffel TJ, Hass AC, Hussey DH, Vigliotti AP, Wen BC, Zahra MK, Sundeen V (1990) The role of kilovoltage irradiation in the treatment of keloids. Int J Radiat Oncol Biol Phys 18(4):833–839

    CAS  PubMed  Google Scholar 

  9. Li XA, Ma CM, Salhani D, Agboola O (1998) Dosimetric evaluation of a widely used kilovoltage X-ray unit for endocavitary radiotherapy. Med Phys 25(8):1464–1471

    CAS  PubMed  Google Scholar 

  10. McCullough EC (1990) Selection of techniques for orthovoltage radiation therapy. Int J Radiat Oncol Biol Phys 18(5):1237–1238

    CAS  PubMed  Google Scholar 

  11. Jepsen ME, Gniadecki R (2015) Treatment of primary cutaneous anaplastic large cell lymphoma with superficial X-rays. Dermatol Rep 7(1):5888

    Google Scholar 

  12. Reichl B, Block A, Schäfer U, Bert C, Müller R, Jung H, Rödel F (2015) DEGRO practical guidelines for radiotherapy of non-malignant disorders. Strahlenther Onkol 191(9):701–709

    PubMed  Google Scholar 

  13. Ebert MA, Carruthers B, Lanzon PJ, Haworth A, Clarke J, Caswell NM, Siddiqui SA (2002) Dosimetry of a low-kV intra-operative X-ray source using basic analytical beam models. Australas Phys Eng Sci Med 25(3):119–123

    CAS  PubMed  Google Scholar 

  14. Schneider F, Fuchs H, Lorenz F, Steil V, Ziglio F, Kraus-Tiefenbacher U, Lohr F, Wenz F (2009) A novel device for intravaginal electronic brachytherapy. Int J Radiat Oncol Biol Phys 74(4):1298–1305

    PubMed  Google Scholar 

  15. Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014) Advances in kilovoltage X-ray beam dosimetry. Phys Med Biol 59(6):R183

    PubMed  Google Scholar 

  16. Dunscombe P, Johnson H, Arsenault C, Mawko G, Bissonnette JP, Seuntjens J (2007) Development of quality control standards for radiation therapy equipment in Canada. J Appl Clin Med Phys 8(1):108–116

    PubMed Central  Google Scholar 

  17. Van Dyk J (ed) (1999) The modern technology of radiation oncology. Medical Physics Publishing, Madison, Wisconsin

    Google Scholar 

  18. IAEA (2008) Setting up a radiotherapy programme: clinical, medical physics, radiation protection and safety aspects. International Atomic Energy Agency, Vienna

    Google Scholar 

  19. Australia Standards (1994) Medical electrical equipment—particular requirements for safety—therapeutic X-ray generators 3200.2.8:1994 Standards Australia. Sydney

    Google Scholar 

  20. Australia Standards (1994) Safety signs for the occupational environment AS 1319–1994 Standards Australia. Sydney

    Google Scholar 

  21. Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2011) Tripartite radiation oncology practice standards. RANZCR, Sydney

    Google Scholar 

  22. ARPANSA (2008) Code of practice for radiation protection in the medical applications of ionizing radiation. Radiation protection series no. 14. Australian Radiation Protection and Nuclear Safety Agency, Miranda, NSW

    Google Scholar 

  23. ARPANSA (2008) Safety guide for radiation protection in radiotherapy. Radiation protection series no. 14.3. Australian Radiation Protection and Nuclear Safety Agency, Miranda, NSW

    Google Scholar 

  24. McGinley PH (2002) Shielding techniques for radiation oncology facilities, 2nd edn. Medical Physics Publishing, Madison, Wisconsin

    Google Scholar 

  25. NCRP (2005) Structural shielding design and evaluation for megavoltage X- and gamma-ray radiotherapy facilities. National Council on Radiation Protection and Measurements (NCRP), Washington, DC

    Google Scholar 

  26. IAEA (2006) Radiation protection in the design of radiotherapy facilities IAEA safety report series no. 47. International Atomic Energy Agency, Vienna

    Google Scholar 

  27. Standards Australia (2015) Medical electrical equipment Particular requirements for the basic safety and essential performance of therapeutic X-ray equipment operating in the range 10 kV to 1 MV. AS/NZS IEC 60601.2.8:2015 Standards Australia, Sydney

    Google Scholar 

  28. Furstoss C (2018) COMP report: CPQR technical quality control guidelines for kilovoltage X ray radiotherapy machines. J Appl Clin Med Phys 19(2):18–21. https://doi.org/10.1002/acm2.12228

    Article  PubMed  Google Scholar 

  29. Santos EF, Evans S, Ford EC, Gaiser JE, Hayden SE, Huffman KE, Johnson JL, Mechalakos JG, Stern RL, Terezakis S (2015) Medical physics practice guideline 4. A: development, implementation, use and maintenance of safety checklists. J Appl Clin Med Phys 16(3):37–59

    PubMed Central  Google Scholar 

  30. Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2011) Tripartite radiation oncology practice standards supplementary guide. RANZCR, Sydney

    Google Scholar 

  31. Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2018) Radiation oncology practice standards part A: fundamentals. RANZCR, Sydney

    Google Scholar 

  32. Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2018) Radiation oncology practice standards part B: guidelines, RANZCR, Sydney

    Google Scholar 

  33. Abdel-Rahman W, Podgorsak EB (2010) Energy transfer and energy absorption in photon interactions with matter revisited: a step-by-step illustrated approach. Radiat Phys Chem 79(5):552–566

    CAS  Google Scholar 

  34. Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, Seuntjens JP (2001) AAPM protocol for 40–300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med Phys 28(6):868–893

    CAS  PubMed  Google Scholar 

  35. Williams JR, Thwaites DI (2000) Radiotherapy physics in practice. Oxford University Press, Oxford

    Google Scholar 

  36. Baldwin Z, Fitchew R (2014) The influence of focal spot size, shape, emission profile and position on field coverage in a Gulmay D3300 Kilovoltage X-ray therapy unit. Australas Phys Eng Sci Med 37(3):515–523

    CAS  PubMed  Google Scholar 

  37. Oliveira A, Fartaria M, Cardoso J, Santos L, Oliveira C, Pereira M, Alves J (2015) The determination of the focal spot size of an X-ray tube from the radiation beam profile. Radiat Meas 82:138–145

    CAS  Google Scholar 

  38. Heales JC, Harrett A, Blake S (1998) Timer error and beam quality variation during “ramp-up” of a superficial X-ray therapy unit. Br J Radiol 71:1306–1309

    CAS  PubMed  Google Scholar 

  39. Aspradakis MM, Zucchetti P (2015) Acceptance, commissioning and clinical use of the WOmed T-200 kilovoltage X-ray therapy unit. Br J Radiol 88(1055):20150001

    PubMed  PubMed Central  Google Scholar 

  40. Butson MJ, Mathur J, Metcalfe PE (1995) Dose characteristics of a new 300 kVp orthovoltage machine. Australas Phys Eng Sci Med 18(3):133–138

    CAS  PubMed  Google Scholar 

  41. Jurado D, Eudaldo T, Carrasco P, Jornet N, Ruiz A, Ribas M (2005) Pantak Therapax SXT 150: performance assessment and dose determination using IAEA TRS-398 protocol. Br J Radiol 78(932):721–732

    CAS  PubMed  Google Scholar 

  42. Palmer AL, Pearson M, Whittard P, McHugh KE, Eaton DJ (2016) Current status of kilovoltage (kV) radiotherapy in the UK: installed equipment, clinical workload, physics quality control and radiation dosimetry. Br J Radiol 89:20160641

    PubMed  PubMed Central  Google Scholar 

  43. Steenbeke F, Gevaert T, Tournel K, Engels B, Verellen D, Storme G, De Ridder M (2015) Quality assurance of a 50-kV radiotherapy unit using EBT3 GafChromic Film A Feasibility Study. Technol Cancer Res Treat 15:163–170

    PubMed  Google Scholar 

  44. Sheu R-D, Powers A, Lo Y-C (2015) Commissioning a 50–100 kV X-ray unit for skin cancer treatment. J Appl Clin Med Phys 16:161–174

    PubMed Central  Google Scholar 

  45. Aukett RJ, Burns JE, Greener AG, Harrison RM, Moretti C, Nahum AE, Rosser KE (2005) Addendum to the IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL). Phys Med Biol 50(12):2739–2748

    CAS  PubMed  Google Scholar 

  46. Klevenhagen SC, Aukett RJ, Harrison RM, Moretti C, Nahum AE, Rosser KE (1996) The IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL; 10–300 kV generating potential). Phys Med Biol 41(12):2605–2625

    CAS  Google Scholar 

  47. Nederlandse Commissie voor Stralingsdosimetrie (1997) NCS Report 10, Dosimetry for low and medium energy X-rays: a code of practice in radiotherapy and radiobiology. Netherlands Commission on Radiation Dosimetry, Delft

    Google Scholar 

  48. Andreo P, Burns DT, Hohlfield K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S (2000) Absorbed dose determination in external beam radiotherapy, an international code of practice for dosimetry based on standards of absorbed dose to water, technical report series no. 398. International Atomic Energy Agency, Vienna

    Google Scholar 

  49. Mayles P (2007) Kilovoltage X-rays. In: Mayles P, Nahum AE, Rosenwald J (eds) Handbook of radiotherapy physics. CRC Press, Boca Raton, pp 439–449

    Google Scholar 

  50. De Prez L, de Pooter J (2008) The new NMi orthovolt X-rays absorbed dose to water primary standard based on water calorimetry. Phys Med Biol 53(13):3531

    PubMed  Google Scholar 

  51. Krauss A, Büermann L, Kramer HM, Selbach HJ (2012) Calorimetric determination of the absorbed dose to water for medium-energy X-rays with generating voltages from 70 to 280 kV. Phys Med Biol 57(19):6245

    CAS  PubMed  Google Scholar 

  52. Seuntjens J, Duane S (2009) Photon absorbed dose standards. Metrologia 46(2):S39

    CAS  Google Scholar 

  53. Pinto M, Pimpinella M, Quini M, D’Arienzo M, Astefanoaei I, Loreti S, Guerra A (2016) A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy X-ray filtered beams. Phys Med Biol 61(4):1738

    CAS  PubMed  Google Scholar 

  54. Ma CM, Li XA, Seuntjens JP (1998) Study of dosimetry consistency for kilovoltage X-ray beams. Med Phys 25(12):2376–2384

    CAS  PubMed  Google Scholar 

  55. Jhala E, Steer B, Laban J, Greig L (2009) Issues encountered with kilovoltage X-ray reference dosimetry when changing codes of practice from TRS 277 to TRS 398. Australas Phys Eng Sci Med 32(1):11–15

    CAS  PubMed  Google Scholar 

  56. Munck Af Rosenschold P, Nilsson P, Knoos T (2008) Kilovoltage X-ray dosimetry-an experimental comparison between different dosimetry protocols. Phys Med Biol 53(16):4431–4442

    PubMed  Google Scholar 

  57. Peixoto JG, Andreo P (2000) Determination of absorbed dose to water in reference conditions for radiotherapy kilovoltage X-rays between 10 and 300 kV: a comparison of the data in the IAEA, IPEMB, DIN and NCS dosimetry protocols. Phys Med Biol 45(3):563–575

    CAS  PubMed  Google Scholar 

  58. Yoo S, Grimm D, Zhu R, Jursinic P, Lopez F, Rownd J, Gillin M (2002) Clinical implementation of AAPM TG61 protocol for kilovoltage X-ray beam dosimetry. Med Phys 29(10):2269–2273

    PubMed  Google Scholar 

  59. Burns DT, Büermann L (2009) Free-air ionization chambers. Metrologia 46(2):S9–S23

    CAS  Google Scholar 

  60. Lye JE, Butler DJ, Webb DV (2010) Monte Carlo correction factors for the ARPANSA kilovoltage free-air chambers and the effect of moving the limiting aperture. Metrologia 47(1):11–20

    Google Scholar 

  61. Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1988) Determination of absorbed dose to water with ionisation chambers calibrated in free air for medium-energy X-rays. Phys Med Biol 33(10):1171

    Google Scholar 

  62. Johns HE, Cunningham JR (1983) The physics of radiology. Charles C. Thomas, Springfield, Illinois

    Google Scholar 

  63. Hill RF, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014) Advances in kilovoltage X-ray beam dosimetry. Phys Med Biol 59(6):R183

    PubMed  Google Scholar 

  64. Baines J, Sim L (2014) The variation of HVL with focal spot to chamber distance as a function of beam quality for the Pantak Therapax 150 X-ray unit and the implications on dose to water determination using the IPEMB code of practice. Australas Phys Eng Sci Med 37(3):559–566

    PubMed  Google Scholar 

  65. Burton NLA, Brimelow J, Welsh AD (2008) A regional audit of kilovoltage X-rays: a single centre approach. Brit J Radiol 81(965):422–426

    CAS  PubMed  Google Scholar 

  66. Nisbet A, Thwaites DI, Sheridan ME (1998) A dosimetric intercomparison of kilovoltage X-rays, megavoltage photons and electrons in the Republic of Ireland. Radiother Oncol 48(1):95–101

    CAS  PubMed  Google Scholar 

  67. Mayles P, Nahum AE, Rosenwald J (2007) Kilovoltage X-rays. Handbook of radiotherapy physics. CRC Press, Boca Raton, Florida

    Google Scholar 

  68. Nahum AE (1999) kV X-ray dosimetry: current status and future challenges. In: Ma CM, Seuntjens JP (eds) Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, Wisconsin, pp 7–26

    Google Scholar 

  69. Klevenhagen SC, D’Souza D, I. B (1991) Complications in low energy X-ray dosimetry caused by electron contaminations. Phys Med Biol 36(8):1111–1116

    Google Scholar 

  70. Healy BJ, Gibbs A, Murry RL, Prunster JE, Nitschke KN (2005) Output factor measurements for a kilovoltage X-ray therapy unit. Australas Phys Eng Sci Med 28(2):115–121

    CAS  PubMed  Google Scholar 

  71. Chica U, Anguiano M, Lallena AM (2008) Study of the formalism used to determine the absorbed dose for low-energy X-ray beams. Phys Med Biol 53(23):6963–6977

    CAS  PubMed  Google Scholar 

  72. Evans PA, Moloney AJ, Mountford PJ (2001) Performance assessment of the Gulmay D3300 kilovoltage X-ray therapy unit. Brit J Radiol 74(882):537–547

    CAS  PubMed  Google Scholar 

  73. Hill R, Mo Z, Haque M, Baldock C (2009) An evaluation of ionization chambers for the relative dosimetry of kilovoltage X-ray beams. Med Phys 36(9):3971–3981

    CAS  PubMed  Google Scholar 

  74. Hill R, Holloway L, Baldock C (2005) A dosimetric evaluation of water equivalent phantoms for kilovoltage X-ray beams. Phys Med Biol 50(21):N331–N344

    CAS  PubMed  Google Scholar 

  75. Perrin BA, Whitehurst P, Cooper P, Hounsell AR (2001) The measurement of kappach factors for application with the IPEMB very low energy dosimetry protocol. Phys Med Biol 46(7):1985–1995

    CAS  PubMed  Google Scholar 

  76. Dowdell S, Tyler M, McNamara J, Sloan K, Ceylan A, Rinks A (2016) Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers. Phys Med Biol 61(23):8395

    CAS  PubMed  Google Scholar 

  77. Hugtenburg RP, Johnston K, Chalmers GJ, Beddoe AH (2001) Application of diamond detectors to the dosimetry of 45 and 100 kvp therapy beams: comparison with a parallel-plate ionization chamber and Monte Carlo. Phys Med Biol 46(9):2489–2501

    CAS  PubMed  Google Scholar 

  78. Livingstone J, Stevenson AW, Butler DJ, Häusermann D, Adam J-F (2016) Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron X-ray fields. Med Phys 43(7):4283–4293

    PubMed  Google Scholar 

  79. Seuntjens J, Aalbers AHL, Grimbergen TWM, Mijnheer BJ, Thierens H, Van Dam J, Wittkamper FW, Zoetelief J, Piessens M, Piret P (1999) Suitability of diamond detectors to measure central axis depth kerma curves for low- and medium-energy X-rays. In: Ma CM, Seuntjens JP (eds) Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, Wisconsin, pp 227–238

    Google Scholar 

  80. Gill S, Hill R (2013) A study on the use of Gafchromic™ EBT3 film for output factor measurements in kilovoltage X-ray beams. Australas Phys Eng Sci Med 36(4):465–471

    PubMed  Google Scholar 

  81. Chica U, Florez G, Anguiano M, Lallena AM (2010) A simple analytical expression to calculate the backscatter factor for low energy X-ray beams. Phys Med 27:75–80

    Google Scholar 

  82. British Journal of Radiology: Supplement 25 (1996) Central axis depth dose data for use in radiotherapy. British Institute of Radiology, London

    Google Scholar 

  83. Lee CH, Chan KK (2000) Electron contamination from the lead cutout used in kilovoltage radiotherapy. Phys Med Biol 45(1):1

    CAS  PubMed  Google Scholar 

  84. Lye JE, Butler DJ, Webb DV (2010) Enhanced epidermal dose caused by localized electron contamination from lead cutouts used in kilovoltage radiotherapy. Med Phys 37(8):3935–3939

    CAS  PubMed  Google Scholar 

  85. Nelson VK, Hill RF (2011) Backscatter factor measurements for kilovoltage X-ray beams using thermoluminescent dosimeters (TLDs). Radiat Meas 46(12):2097–2099

    CAS  Google Scholar 

  86. Newton J, Oldham M, Thomas A, Li Y, Adamovics J, Kirsch DG, Das S (2011) Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med Phys 38(12):6754–6762

    PubMed  PubMed Central  Google Scholar 

  87. Bassinet C, Huet C, Derreumaux S, Brunet G, Chéa M, Baumann M, Lacornerie T, Gaudaire-Josset S, Trompier F, Roch P (2013) Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife® and linear accelerators equipped with microMLC and circular cones. Med Phys 40(7):071725

    CAS  PubMed  Google Scholar 

  88. Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35(1):206–215

    PubMed  Google Scholar 

  89. Mancosu P, Reggiori G, Stravato A, Gaudino A, Lobefalo F, Palumbo V, Navarria P, Ascolese A, Picozzi P, Marinelli M (2015) Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system. Med Phys 42(9):5035–5041

    CAS  PubMed  Google Scholar 

  90. McKerracher C, Thwaites D (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44(9):2143

    CAS  PubMed  Google Scholar 

  91. Morales JE, Crowe SB, Hill R, Freeman N, Trapp J (2014) Dosimetry of cone-defined stereotactic radiosurgery fields with a commercial synthetic diamond detector. Med Phys 41(11):111702

    PubMed  Google Scholar 

  92. Morales J, Hill R, Crowe S, Kairn T, Trapp J (2014) A comparison of surface doses for very small field size X-ray beams: Monte Carlo calculations and radiochromic film measurements. Australas Phys Eng Sci Med 37(2):303–309

    CAS  PubMed  Google Scholar 

  93. Pidikiti R, Stojadinovic S, Speiser M, Song KH, Hager F, Saha D, Solberg TD (2011) Dosimetric characterization of an image-guided stereotactic small animal irradiator. Phys Med Biol 56(8):2585–2599

    CAS  PubMed  Google Scholar 

  94. Verhaegen F, Granton P, Tryggestad E (2011) Small animal radiotherapy research platforms. Phys Med Biol 56(12):R55–R83

    PubMed  Google Scholar 

  95. Verhaegen F, van Hoof S, Granton PV, Trani D (2014) A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies. Z Med Phys 24:323–334

    PubMed  Google Scholar 

  96. Noblet C, Chiavassa S, Smekens F, Sarrut D, Passal V, Suhard J, Lisbona A, Paris F, Delpon G (2016) Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films. Phys Med Biol 61(9):3521

    CAS  PubMed  Google Scholar 

  97. Damodar J, Pope D, Odgers D, Hill R (2015) O065 A study of solid state detectors for kilovoltage X-ray beam dosimetry. In: EPSM2015. Wellington, New Zealand

    Google Scholar 

  98. Damodar J, Odgers D, Pope D, Hill R (2018) A study on the suitability of the PTW microDiamond detector for kilovoltage X-ray beam dosimetry. Appl Rad Iso. https://doi.org/10.1016/j.apradiso.2018.01.025

    Article  Google Scholar 

  99. Carlsson CA (1993) Differences in reported backscatter factors for low-energy X-rays: a literature study. Phys Med Biol 38(4):521

    Google Scholar 

  100. Grosswendt B (1984) Backscatter factors for X-rays generated at voltages between 10 and 100 kV. Phys Med Biol 29(5):579–591

    CAS  PubMed  Google Scholar 

  101. Grosswendt B (1990) Dependence of the photon backscatter factor for water on source-to-phantom distance and irradiation field size. Phys Med Biol 35(9):1233–1245

    Google Scholar 

  102. Ma CM, Seuntjens JP (1999) Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage X-ray beams. Phys Med Biol 44(1):131–143

    CAS  PubMed  Google Scholar 

  103. Grosswendt B (1993) Dependence of the photon backscatter factor for water on irradiation field size and source-to-phantom distances between 1.5 and 10 cm. Phys Med Biol 38(2):305–310

    Google Scholar 

  104. Klevenhagen SC (1989) Experimentally determined backscatter factors for X-rays generated at voltages between 16 and 140 kV. Phys Med Biol 34(12):1871–1882

    Google Scholar 

  105. Knight RT (1994) Backscatter factors for low and medium energy X-rays calculated by the Monte Carlo method (trans: Department P). Royal Marsden NHS Trust, Sutton

    Google Scholar 

  106. Knight RT, Nahum AE (1994) Depth and field-size dependence of ratios of mass-energy absorption coefficient, water-to-air, for kV X-ray dosimetry. In: Paper presented at the IAEA Proceedings Series, Vienna

  107. Hewson E, Butson M, Hill R (2018) Evaluating TOPAS for the calculation of backscatter factors for low energy X-ray beams. Phys Med Biol. https://doi.org/10.1088/1361-6560/aadf28

    Article  PubMed  Google Scholar 

  108. Butson MJ, Cheung T, Yu PKN (2008) Measurement of dose reductions for superficial X-rays backscattered from bone interfaces. Phys Med Biol 53(17):N329–N336

    PubMed  Google Scholar 

  109. Healy BJ, Sylvander S, Nitschke KN (2008) Dose reduction from loss of backscatter in superficial X-ray radiation therapy with the Pantak SXT 150 unit. Australas Phys Eng Sci Med 31(1):49–55

    CAS  PubMed  Google Scholar 

  110. Hill R, Kuncic Z, Baldock C (2010) The water equivalence of solid phantoms for low energy photon beams. Med Phys 37(8):4355–4363

    CAS  PubMed  Google Scholar 

  111. Klevenhagen SC (1982) The build-up of backscatter in the energy range 1 mm Al to 8 mm Al HVT (radiotherapy beams). Phys Med Biol 27(8):1035–1043

    CAS  Google Scholar 

  112. Klevenhagen SC, Aukett RJ, Burns JE, Harrison RM, Knight RT, Nahum AE, Rosser KE (1991) Memorandum from the Institute of Physical Sciences in Medicine. Back-scatter and F-factors for low- and medium-energy X-ray beams in radiotherapy. Brit J Radiol 64(765):836–841

    CAS  PubMed  Google Scholar 

  113. Patrocinio HJ, Bissonnette JP, Bussière MR, Schreiner LJ (1996) Limiting values of backscatter factors for low-energy X-ray beams. Phys Med Biol 41(2):239

    CAS  PubMed  Google Scholar 

  114. Butson MJ, Cheung T, Yu PKN (2007) Radiochromic film for verification of superficial X-ray backscatter factors. Australas Phys Eng Sci Med 30(4):269–273

    CAS  PubMed  Google Scholar 

  115. Kim J, Hill R, Claridge MacKonis E, Kuncic Z (2010) An investigation of backscatter factors for kilovoltage X-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements. Phys Med Biol 55(3):783–797

    CAS  PubMed  Google Scholar 

  116. Smith L, Hill R, Nakano M, Kim J, Kuncic Z (2011) The measurement of backscatter factors of kilovoltage X-ray beams using Gafchromic EBT2 film. Australas Phys Eng Sci Med 34(2):261–266

    CAS  PubMed  Google Scholar 

  117. Coudin D, Marinello G (1998) Lithium borate TLD for determining the backscatter factors for low- energy X rays: comparison with chamber-based and Monte Carlo derived values. Med Phys 25(3):347–353

    CAS  PubMed  Google Scholar 

  118. Harrison RM, Walker C, Aukett RJ (1990) Measurement of backscatter factors for low energy radiotherapy (0.1–2.0 mm Al HVL) using thermoluminescence dosimetry. Phys Med Biol 35(9):1247

    CAS  PubMed  Google Scholar 

  119. Li XA, Ma CM, Salhani D (1997) Measurement of percentage depth dose and lateral beam profile for kilovoltage X-ray therapy beams. Phys Med Biol 42(12):2561–2568

    CAS  PubMed  Google Scholar 

  120. Gerig L, Soubra M, Salhani D (1994) Beam characteristics of the Therapax DXT300 orthovoltage therapy unit. Phys Med Biol 39(9):1377–1392

    CAS  PubMed  Google Scholar 

  121. Knoos T, Rosenschold PMA, Wieslander E (2007) Modelling of an orthovoltage X-ray therapy unit with the EGSnrc Monte Carlo package. J Phys Conf Ser 74:021009

    Google Scholar 

  122. di Sopra FM, Keall P, Beckham W (1999) An analytical model of a kilovoltage beam phase space. Med Phys 26(9):2000–2006

    PubMed  Google Scholar 

  123. Butson MJ, Cheung T, Yu PKN, Alnawaf H (2009) Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays. Australas Phys Eng Sci Med 32(4):196–202

    CAS  PubMed  Google Scholar 

  124. Devic S, Seuntjens J, Hegyi G, Podgorsak EB, Soares CG, Kirov AS, Ali I, Williamson JF, Elizondo A (2004) Dosimetric properties of improved GafChromic films for seven different digitizers. Med Phys 31(9):2392–2401

    CAS  PubMed  Google Scholar 

  125. Devic S, Seuntjens J, Sham E, Podgorsak EB, Schmidtlein CR, Kirov AS, Soares CG (2005) Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 32(7):2245–2253

    PubMed  Google Scholar 

  126. Morales JE, Butson M, Crowe SB, Hill R, Trapp J (2016) An experimental extrapolation technique using the Gafchromic EBT3 film for relative output factor measurements in small X-ray fields. Med Phys 43(8):4687–4692

    PubMed  Google Scholar 

  127. Reinhardt S, Hillbrand M, Wilkens JJ, Assmann W (2012) Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams. Med Phys 39(8):5257–5262

    CAS  PubMed  Google Scholar 

  128. Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley K, Oldham M, Schreiner L (2010) Polymer gel dosimetry. Phys Med Biol 55(5):R1

    CAS  PubMed  PubMed Central  Google Scholar 

  129. De Deene Y, Venning A, Hurley C, Healy B, Baldock C (2002) Dose? Response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys Med Biol 47(14):2459

    PubMed  Google Scholar 

  130. Trapp J, Michael G, De Deene Y, Baldock C (2002) Attenuation of diagnostic energy photons by polymer gel dosimeters. Phys Med Biol 47(23):4247

    CAS  PubMed  Google Scholar 

  131. De Deene Y, Baldock C (2002) Optimization of multiple spin–echo sequences for 3D polymer gel dosimetry. Phys Med Biol 47(17):3117

    PubMed  Google Scholar 

  132. Gorjiara T, Hill R, Kuncic Z, Adamovics J, Bosi S, Kim J, Baldock C (2011) Investigation of radiological properties and water equivalency of PRESAGE® dosimeters. Med Phys 38(4):2265–2274

    CAS  PubMed  Google Scholar 

  133. Gorjiara T, Hill R, Kuncic Z, Bosi S, Baldock C (2010) An evaluation of Genipin gel as a water equivalent dosimeter for megavoltage electron beams and kilovoltage X-ray beams. J Phys: Conf Ser 250:164–168

    Google Scholar 

  134. Gorjiara T, Hill R, Kuncic Z, Bosi S, Davies J, Baldock C (2011) Radiological characterization and water equivalency of genipin gel for X-ray and electron beam dosimetry. Phys Med Biol 56(15):4685

    PubMed  Google Scholar 

  135. Keall P, Baldock C (1999) A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry. Australas Phys Eng Sci Med 22(3):85–91

    CAS  PubMed  Google Scholar 

  136. Allahverdi M, Nisbet A, Thwaites DI (1999) An evaluation of epoxy resin phantom materials for megavoltage photon dosimetry. Phys Med Biol 44(5):1125–1132

    CAS  PubMed  Google Scholar 

  137. Christ G (1995) White polystyrene as a substitute for water in high energy photon dosimetry. Med Phys 22(12):2097–2100

    CAS  PubMed  Google Scholar 

  138. McEwen MR, Niven D (2006) Characterization of the phantom material virtual water in high-energy photon and electron beams. Med Phys 33(4):876–887

    CAS  PubMed  Google Scholar 

  139. White DR (1978) Tissue substitutes in experimental radiation physics. Med Phys 5(6):467–479

    CAS  PubMed  Google Scholar 

  140. Ramaseshan R, Kohli K, Cao F, Heaton R (2008) Dosimetric evaluation of plastic water diagnostic therapy. J Appl Clin Med Phys 9(2):98–111

    PubMed Central  Google Scholar 

  141. Hermann KP, Geworski L, Muth M, Harder D (1985) Polyethylene-based water-equivalent phantom material for X-ray dosimetry at tube voltages from 10 to 100 kV. Phys Med Biol 30(11):1195–1200

    CAS  PubMed  Google Scholar 

  142. Reniers B, Verhaegen F, Vynckier S (2004) The radial dose function of low-energy brachytherapy seeds in different solid phantoms: comparison between calculations with the EGSnrc and MCNP4C Monte Carlo codes and measurements. Phys Med Biol 49(8):1569–1582

    CAS  PubMed  Google Scholar 

  143. Meigooni AS, Li Z, Mishra V, Williamson JF (1994) A comparative study of dosimetric properties of plastic water and solid water in brachytherapy applications. Med Phys 21(12):1983–1987

    CAS  PubMed  Google Scholar 

  144. Hill RF, Brown S, Baldock C (2008) Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements. Radiat Meas 43(7):1258–1264

    CAS  Google Scholar 

  145. Li XA, Ma CM, Salhani D (1999) Relative dosimetry measurement for kilovoltage X-ray units. In: Ma CM, Seuntjens JP (eds) Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, pp 213–226

    Google Scholar 

  146. Schauer DA, Cassata JR, King JJ (2000) A comparison of measured and calculated photon backscatter from dosemeter calibration phantoms. Radiat Prot Dosim 88(4):319–321

    CAS  Google Scholar 

  147. Schwahn SO, Gesell TF (2008) Variations in backscatter observed in PMMA whole-body dosimetry slab phantoms. Radiat Prot Dosim 128(3):375–381

    CAS  Google Scholar 

  148. Traub RJ, McDonald JC, Murphy MK (1997) Determination of photon backscatter from several calibration phantoms. Radiat Prot Dosim 74(1–2):13–20

    CAS  Google Scholar 

  149. Kron T, Duggan L, Smith T, Rosenfeld A, Butson M, Kaplan G, Howlett S, Hyodo K (1998) Dose response of various radiation detectors to synchrotron radiation. Phys Med Biol 43(11):3235–3259

    CAS  PubMed  Google Scholar 

  150. Mobit P, Agyingi E, Sandison G (2006) Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams. Radiat Prot Dosim 119(1–4):497–499

    CAS  Google Scholar 

  151. Nelson VK, McLean ID, Holloway L (2008) Use of thermoluminescent dosimetry (TLD) for quality assurance of orthovoltage X-ray therapy machines. Radiat Meas 43(2–6):908–911

    CAS  Google Scholar 

  152. Kron T, Smith A, Hyodo K (1996) Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy. Australas Phys Eng Sci Med 19(4):225–236

    CAS  PubMed  Google Scholar 

  153. Butson MJ, Cheung T, Yu PK, Price S, Bailey M (2008) Measurement of radiotherapy superficial X-ray dose under eye shields with radiochromic film. Phys Med 24(1):29–33

    PubMed  Google Scholar 

  154. Richley L, John AC, Coomber H, Fletcher S (2010) Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy. Phys Med Biol 55(9):2601–2617

    CAS  PubMed  Google Scholar 

  155. Eaton DJ (2012) Quality assurance and independent dosimetry for an intraoperative X-ray device. Med Phys 39(11):6908–6920

    CAS  PubMed  Google Scholar 

  156. Eduardo Villarreal-Barajas J, Khan RFH (2014) Energy response of EBT3 radiochromic films: implications for dosimetry in kilovoltage range. J Appl Clin Med Phys 15(1):331–338

    PubMed Central  Google Scholar 

  157. Hammer CG, Rosen BS, Fagerstrom JM, Culberson WS, DeWerd LA (2018) Experimental investigation of Gafchromic® Ebt3 intrinsic energy dependence with kilovoltage X rays, 137cs, and 60co. Med Phys 45(1):448–459

    CAS  PubMed  Google Scholar 

  158. Cheung T, Butson MJ, Yu PK (2003) MOSFET dosimetry in-vivo at superficial and orthovoltage X-ray energies. Australas Phys Eng Sci Med 26(2):82–84

    CAS  PubMed  Google Scholar 

  159. Cheung T, Yu PKN, Butson MJ (2005) Low-dose measurement with a MOSFET in high-energy radiotherapy applications. Radiat Meas 39(1):91–94

    CAS  Google Scholar 

  160. Lian CPL, Othman MAR, Cutajar D, Butson M, Guatelli S, Rosenfeld AB (2011) Monte Carlo study of the energy response and depth dose water equivalence of the MOSkin radiation dosimeter at clinical kilovoltage photon energies. Australas Phys Eng Sci Med 34(2):273–279

    CAS  PubMed  Google Scholar 

  161. Akselrod MS, Bøtter-Jensen L, McKeever SWS (2006) Optically stimulated luminescence and its use in medical dosimetry. Radiat Meas 41(Supplement 1):S78–S99

    Google Scholar 

  162. Reft CS (2009) The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys 36(5):1690–1699. https://doi.org/10.1118/1.3097283

    Article  CAS  PubMed  Google Scholar 

  163. Guerda Massillon JL, Iván Domingo M-M, Porfirio D-A (2016) Optimum absorbed dose versus energy response of Gafchromic EBT2 and EBT3 films exposed to 20–160 kV X-rays and 60 Co gamma. Biomed Phys Eng Expr 2(4):045005

    Google Scholar 

  164. Mart CJ, Elson HR, Lamba MAS (2012) Measurement of low-energy backscatter factors using GAFCHROMIC film and OSLDs. J Appl Clin Med Phys 13(6):126–133

    PubMed Central  Google Scholar 

  165. Lessard F, Archambault L, Plamondon M, Després P, Therriault-Proulx F, Beddar S, Beaulieu L (2012) Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range. Med Phys 39(9):5308–5316

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Hill RF, Tofts PS, Baldock C (2010) The Bland–Altman analysis: does it have a role in assessing radiation dosimeter performance relative to an established standard? Radiat Meas 45(7):810–815

    CAS  Google Scholar 

  167. Li XA, Salhani D, Ma CM (1997) Characteristics of orthovoltage X-ray therapy beams at extended SSD for applicators with end plates. Phys Med Biol 42(2):357–370

    CAS  PubMed  Google Scholar 

  168. Van Dyk J (1999) Radiation oncology overview. In: Van Dyk J (ed) The modern technology of radiation oncology. Medical Physics Publishing, Madison, Wisconsin

    Google Scholar 

  169. Alaei P, Gerbi BJ, Geise RA (2000) Evaluation of a model-based treatment planning system for dose computations in the kilovoltage energy range. Med Phys 27(12):2821–2826

    CAS  PubMed  Google Scholar 

  170. Ding GX, Duggan DM, Coffey CW (2008) Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy. Med Phys 35(3):1135–1144

    PubMed  Google Scholar 

  171. Ding GX, Pawlowski JM, Coffey CW (2008) A correction-based dose calculation algorithm for kilovoltage X rays. Med Phys 35(12):5312–5316

    PubMed  Google Scholar 

  172. Gao W, Raeside DE (1997) Orthovoltage radiation therapy treatment planning using Monte Carlo simulation: treatment of neuroendocrine carcinoma of the maxillary sinus. Phys Med Biol 42(12):2421–2433

    CAS  PubMed  Google Scholar 

  173. Lee CHM, Chan KKD (2000) Electron contamination from the lead cutout used in kilovoltage radiotherapy. Phys Med Biol 45(1):1–8

    CAS  PubMed  Google Scholar 

  174. Das IJ, Chopra KL (1995) Backscatter dose perturbation in kilovoltage photon beams at high atomic number interfaces. Med Phys 22(6):767–773

    CAS  PubMed  Google Scholar 

  175. Eaton DJ, Doolan PJ (2013) Review of backscatter measurement in kilovoltage radiotherapy using novel detectors and reduction: from lack of underlying scattering material. J Appl Clin Med Phys 14(6):5–17

    PubMed Central  Google Scholar 

  176. Hill R, Healy B, Holloway L, Baldock C (2007) An investigation of dose changes for therapeutic kilovoltage X-ray beams with underlying lead shielding. Med Phys 34(7):3045–3053

    PubMed  Google Scholar 

  177. Huq MS, Venkataramanan N, Meli JA (1992) The effect on dose of kilovoltage X-rays backscattered from lead. Int J Radiat Oncol Biol Phys 24(1):171–175

    CAS  PubMed  Google Scholar 

  178. Lanzon PJ, Sorell GC (1993) The effect of lead underlying water on the backscatter of X-rays of beam qualities 0.5 mm to 8 mm Al HVT. Phys Med Biol 38(8):1137–1144

    Google Scholar 

  179. Das IJ (1997) Forward dose perturbation at high atomic number interfaces in kilovoltage X-ray beams. Med Phys 24(11):1781–1787

    CAS  PubMed  Google Scholar 

  180. Mitchell G, Kron T, Back M (1998) High dose behind inhomogeneities during medium-energy X-ray irradiation. Phys Med Biol 43(5):1343–1350

    CAS  PubMed  Google Scholar 

  181. Currie BE (2009) Determining superficial dosimetry for the internal canthus from the Monte Carlo simulation of kV photon and MeV electron beams. Australas Phys Eng Sci Med 32(2):68–80

    CAS  PubMed  Google Scholar 

  182. Baker CR, Luhana F, Thomas SJ (2002) Absorbed dose behind eye shields during kilovoltage photon radiotherapy. Brit J Radiol 75(896):685–688

    CAS  PubMed  Google Scholar 

  183. Gordon KB, Char DH, Sagerman RH (1995) Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys 31(5):1123–1139

    CAS  PubMed  Google Scholar 

  184. Wang D, Sobolewski M, Hill R (2012) The dosimetry of eye shields for kilovoltage X-ray beams. Australas Phys Eng Sci Med 35(4):491–495. https://doi.org/10.1007/s13246-012-0166-9

    Article  CAS  PubMed  Google Scholar 

  185. Kron T, Dwyer M, Smith L, MacDonald A, Pawsey M, Raik E, Arnold A, Hill B, Duchesne G (2015) The development of practice standards for radiation oncology in Australia: a tripartite approach. Clin Oncol 27(6):325–329

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the work done by the past and current chairs of the ACPSEM ROSG, being Michael Bailey and Mario Perez respectively, for their support in the implementation of the position papers and organisation of the Radiation Oncology working parties. The authors would also like to thank their colleagues in their respective organisations for many valuable discussions in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Hill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, R., Healy, B., Butler, D. et al. Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine. Australas Phys Eng Sci Med 41, 781–808 (2018). https://doi.org/10.1007/s13246-018-0692-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-018-0692-1

Keywords

Navigation