Skip to main content

Advertisement

Log in

An analysis of ambulatory blood pressure monitoring using multi-label classification

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Ambulatory blood pressure monitoring (ABPM) involves measuring blood pressure by means of a tensiometer carried by the patient for a duration of 24 h, it currently occupies a central place in the diagnosis and follow-up of hypertensive patients, it provides crucial information which allows to make a specific diagnosis and adapt therapeutic attitude accordingly. The traditional analysis process suffers from different problems: it requires a lot of time and expertise, and several calculations should be performed manually by the expert, who is generally very busy. In this work, we attempt to improve the analysis of ABPM data using multi-label classification methods, where a record is associated with more than one label (class) at the same time. Seven algorithms are experimentally compared on a new multi-label ABPM-dataset. Experiments are conducted on 270 hypertensive patient records characterized by 40 attributes and associated with six labels. Results show that the multi-label modeling of ABPM data helps to investigate label dependencies and provide interesting insights, which can be integrated into the ABPM devices to dispense automatically detailed reports with possible future complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Syndrome differentiation in Traditional Chinese Medicine (TCM) [13] is the comprehensive analysis of clinical information gained by the four main diagnostic TCM procedures: observation, listening, questioning, and pulse analysis, and it is used to guide the choice of treatment either by acupuncture and/or TCM herbal formulae.

  2. www.swisshypertension.ch.

  3. www.dableducational.com.

  4. Reflexes to control blood pressure.

References

  1. Aldrees A, Chikh A (2016) Comparative evaluation of four multi-label classification algorithms in classifying learning objects. Comput Appl Eng Educ 24(4):651–660

    Article  Google Scholar 

  2. Batista V, Pintado F, Gil AB, Rodriguez V, Moreno M (2011) A system for multi-label classification of learning objects. In: 6th international conference SOCO 2011 advances in intelligent and soft computing, vol 87, pp 523–531

  3. Cheng W, Hllermeier E, Dembczynski KJ (2010) Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th international conference on machine learning (ICML-10) pp 279–286

  4. Clement DL, Buyzere DL, Bacquer DA, Leeuw PW, Duprez DA, Fagard RH, Niepen PVD (2003) Pronostic value of ambulatory blood-pressure recordings in patients with hypertension. N Engl J Med 348:2407–2415

    Article  PubMed  Google Scholar 

  5. Copetti A, Loques O, Leite J, Barbosa TP, da Nobrega AC (2009) Intelligent context-aware monitoring of hypertensive patients. In: 2009 3rd international conference on pervasive computing technologies for healthcare IEEE pp 1–6

  6. Douibi K, Benabid M, Settouti N, Chikh MA (2017) Data for: an analysis of ambulatory blood pressure monitoring (abpm). Mendeley Data, v1. https://doi.org/10.17632/y4dh3b3tfx.1

  7. Furnkranz J, Hullermeier E, Mencia EL, Brinker K (2008) Multilabel classification via calibrated label ranking. Mach Learn 73(2):133–153

    Article  Google Scholar 

  8. Gibaja E, Ventura S (2015) A tutorial on multi-label learning. ACM Comput Surv 9(4):39

    Google Scholar 

  9. Gobin N, Wuerzener G, Waeber B, Burnier M (2012) Mesure ambulatoire de la pression artérielle sur 24 heures. Forum Med Suisse 12(3132):600–607

    Article  Google Scholar 

  10. Gosse P, Lasserre R, Minifie C, Lemetayer P, Clementy J (2004) Blood pressure surge on rising. J Hypertens 22(6):1113–1118

    Article  CAS  PubMed  Google Scholar 

  11. Guo-Zheng L, Zehui H, Feng-Feng S (2015) Patient classification of hypertension in traditional chinese medicine using multi-label learning techniques. BMC Med Genom 8(3):1

    Google Scholar 

  12. Herrera F, Charte F, Rivera AJ, Del Jesus MJ (2016) Multilabel classification: problem analysis, metrics and techniques. Springer, Cham

    Book  Google Scholar 

  13. Jiang M, Lu C, Zhang C, Yang J, Tan Y, Lu A, Chan K (2012) Syndrome differentiation in modern research of traditional chinese medicine. J Ethnopharmacol 140(3):634–642

    Article  PubMed  Google Scholar 

  14. Kanoun F, Alaya NB, driss S, Sayem N, Chihaoui M, Harzallah F, Slimane H (2010) Appréciation du profil tensionnel par mesure ambulatoire de la pression artérielle chez les diabétiques hypertendus traités. La tunisie Médicale 88(12):885–889

    PubMed  Google Scholar 

  15. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, Murata M, Kuroda T, Schwartz JE, Shimada K (2003) Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives. Circulation 107(10):1401–1406

    Article  PubMed  Google Scholar 

  16. Lee J, Kim H, Kim NR, Lee JH (2016) An approach for multi-label classification by directed acyclic graph with label correlation maximization. Inf Sci 351:101–114. https://doi.org/10.1016/j.ins.2016.02.037

    Article  Google Scholar 

  17. Madin K, Iqbal P (2006) Twenty four hour ambulatory blood pressure monitoring: a new tool for determining cardiovascular prognosis. Postgrad Med J 82(971):548–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Madjarov G, Kocev D, Gjorgjevikj D, Dzeroski S (2012) An extensive experimental comparison of methods for multi-label learning. Pattern Recognit 45(9):3084–3104

    Article  Google Scholar 

  19. Modi H, Panchal M (2012) Experimental comparison of different problem transformation methods for multi-label classification using meka. Int J Comput Appl 59:15

    Google Scholar 

  20. Motamed S, Pechére-Bertschi A (2013) Hypertension artérielle. Department of Primary Care, HUG Arterial Hypertension Unit, SMPR, HUG, Geneva

    Google Scholar 

  21. Ngendakumana E, Hattaoui ME (2014) Evaluation du controle de lhypertension artérielle par la mapa chez les patients diabètiques hypertendus. PhD thesis, Cardiology Department: Ibn Tofail Hospital. CHU Mohammed VI. Marrakech

  22. OBrien E, Coats A, Owens P (2000) Use and interpretation of ambulatory blood pressure monitoring: recommendations of the british hypertension society. BMJ 320:1128–34

    Article  CAS  Google Scholar 

  23. OBrien E, Waeber B, Parati G (2001) European society of hypertension recommendations on blood pressure measuring devices. BMJ 322:532–6

    Google Scholar 

  24. OBrien E, Asmar R, Beilin L (2003) European society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens 21:821–48

    Article  CAS  Google Scholar 

  25. Papadopoulos D, Makris T (2007) Masked hypertension definition, impact, outcomes: a critical review. J Clin Hypertens 9:956–963

    Article  Google Scholar 

  26. Pechre-Bertschi A, Michel Y, Brandstatter H, Muggli F, Gaspoz JM (2009) Lecture de la mesure ambulatoire de la pression artrielle (mapa) par le mdecin de premier recours. Rev Med Suisse 5:1876–1880

    Google Scholar 

  27. Pierdomenico S, Cuccurullo F (2010) Ambulatory blood pressure monitoring in type 2 diabetes and metabolic syndrome: a review. Blood Press Monit 15(1):1–7

    Article  PubMed  Google Scholar 

  28. Read J (2010) Scalable multi-label classification. PhD thesis, University of Waikato

  29. Read J, Pfahringer B, Holmes G (2008) Multi-label classification using ensembles of pruned sets. In: Proceedings of the 8th IEEE international conference on data mining, pp 995–1000

  30. Read J, Pfahringer B, Holmes G, Frank E (2009) Classifier chains for multi-label classification. In: Proceedings of the European conference on machine learning, pp 254–269

  31. Read J, Reutemann P, Pfahringer B, Holmes G (2016) Meka: a multi-label/multi-target extension to weka. J Mach Learn Res 17(21):1–5

    Google Scholar 

  32. Trohidis K, Tsoumakas G, Kalliris G, Vlahavas I (2011) Multi-label classification of music by emotion. EURASIP J Audio Speech Music Process 1:1

    Google Scholar 

  33. Tsoumakas G, Katakis I (2007) Multi label classification: an overview. Int J Data Wareh Min 3(3):1–13

    Article  Google Scholar 

  34. Tsoumakas G, Katakis I, Vlahavas I (2010) Mining multi-label data. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, New York, pp 667–685

    Google Scholar 

  35. Tsoumakas G, Katakis I, Vlahavas I (2011) Random k-labelsets for multi-label classification. IEEE Trans Knowl Data Eng 23(7):1079–1089

    Article  Google Scholar 

  36. Vilela-Martin J, de Melo RV, Kuniyoshi C, Abdo A, Yugar-Toledo J (2011) Hypertensive crisis: clinical-epidemiological profile. Hypertens Res 34(3):367–371

    Article  PubMed  Google Scholar 

  37. Whitworth J, Organization W (2003) International society of hypertension writing group: 2003 world health organization (who)/ international society of hypertension (ish) statement on management of hypertension. J Hypertens 21(11):1983–1992

    Article  PubMed  Google Scholar 

  38. Zachariah PK, Sheps SG, Ilstrup DM, Long CR, Bailey KR, Wiltgen CM, Carlson CA (1988) Blood pressure load-a better determinant of hypertension. Mayo Clin Proc 63(11):1085–1091

    Article  CAS  PubMed  Google Scholar 

  39. Zanchetti A (1997) The role of ambulatory blood pressure monitoring in clinical practice. Am J Hypertens 10(9):1069–1080. https://doi.org/10.1016/S0895-7061(97)00270-7

    Article  CAS  PubMed  Google Scholar 

  40. Zhang M, Zhou Z (2006) Multi-label neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 18(10):1338–1351

    Article  Google Scholar 

  41. Zhang M, Zhou Z (2007) Ml-knn: a lazy learning approach to multi-label learning. Pattern Recognit 40(7):2038–2048

    Article  Google Scholar 

  42. Zhang M, Zhou Z (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalida Douibi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douibi, K., Settouti, N., Chikh, M.A. et al. An analysis of ambulatory blood pressure monitoring using multi-label classification. Australas Phys Eng Sci Med 42, 65–81 (2019). https://doi.org/10.1007/s13246-018-0713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-018-0713-0

Keywords

Navigation