Skip to main content

Advertisement

Log in

Spatiotemporal independent component analysis combine general linear model applied to fMRI for eliminating neural noise

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) has recently become an effective means to explore the mechanism of functional rehabilitation in stroke patients. Neural noise is an inevitable structural noise, and is an important factor caused individual differences in fMRI data, therefore, eliminating the neural noise is being regarded as one of the task that cannot be ignored. In this paper, a new algorithm combines spatiotemporal independent component analysis and general linear model (GLM) is proposed to eliminate the effect caused by excess neural activity. This new algorithm simultaneously maximizes the independence over time and space in fMRI data for establishing the spatiotemporal balance. The new technique was applied to extract the active regions of ankle dorsiflexion during fMRI scanning process. Compared to results of GLM, the results of new combined algorithm is more reasonable with an 8 % improvement in correlation coefficient. It confirmed that this new algorithm is effective in eliminating system noise and neural disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chuang KH, Huang KM (2001) Image analysis of functional magnetic resonance imaging. Biomed Eng Appl Basis Commun 13:248–255

    Article  Google Scholar 

  2. Thirumala P, Hier DB, Patel P (2002) Motor recovery after stroke: lessons from functional brain imaging. Neurol Res 24:453–458

    Article  PubMed  Google Scholar 

  3. Yadong L, Dewen H (2007) Structured noise analysis for functional magnetic resonance image. Acta Electronica Sinica 10:1954–1960

    Google Scholar 

  4. Daunizeau J, Stephan KE, Friston KJ (2012) Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? NeuroImage 62:464–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Friman Ola, Borga Magnus, Lundberg Peter (2002) Exploratory fMRI analysis by autocorrelation maximization. NeuroImage 16:454–464

    Article  PubMed  Google Scholar 

  6. Herault J, Jutten C (1986) Space or time adaptive signal processing by neural network models. In: Denker JS (ed), Neural networks for computing: AIP conference proceedings, New York, p 151

  7. Common P (1994) Independent component analysis—a new concept? Sig Process 36:287–314

    Article  Google Scholar 

  8. Jutten C, Harault J (1991) Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Sig Process 24(1):1–10

    Article  Google Scholar 

  9. McKeown MJ, Makeig S, Brown GG et al (1998) Analysis of fMRI data by blind separation into spatial independent components. Hum Brain Mapp 6:160–188

    Article  CAS  PubMed  Google Scholar 

  10. McKeown MJ, Sejnowski TJ (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6:368–372

    Article  CAS  PubMed  Google Scholar 

  11. McKeown MJ (2000) Detection of consistently stimulus correlated activations in fMRI data with hybrid independent component analysis (HYBICA). Neurolmage II:24–35

    Article  Google Scholar 

  12. Colhoun VD et al (2001) Spatial and temporal independent component analysis of functional MRI data containing a pair of task related related waveforms. Hum Brain Mapp 13:43–53

    Article  Google Scholar 

  13. Jung T, Makeig S, Mckeown M et al (2001) Imaging brain dynamics using independent component analysis. Proc IEEE 89:1107–1122

    Article  Google Scholar 

  14. Karhunen J, Oja E, Wang L, Vigario R, Joutsensalo J (1997) A class of neural networks for independent component analysis. IEEE Trans Neural Netw 8:486–503

    Article  CAS  PubMed  Google Scholar 

  15. Rasheed T, Lee Y-K, et al. (2009) Constrained spatiotemporal independent component analysis and its application for fMRI data analysis. IFMBE proceedings, pp 555-558

  16. JV Stone, J Porrill, NR Porter, NM.Hunkin (2000) Spatiotemporal ICA of fMRI Data. Computational Neuroscience Report 202

  17. Stone JV, Porrill J, Porter NR, Wilkinson IW (2002) Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. NeuroImage 15(2):407–421

    Article  CAS  PubMed  Google Scholar 

  18. Stone JV, Porrill J (1999) Regularisation using spatiotemporal independence and predictability. Neurocomputing 49:456

    Google Scholar 

  19. Stone JV, Porrill J, Buchel C, Friston K (1999) Spatial, temporal, and spatiotemporal independent component analysis of fMRI data. Proc. Leeds Statistical Research Workshop

  20. Stone JV (2002) Independent component analysis: an introduction. Trends Cognit Sci 6(2):59–64

    Article  Google Scholar 

  21. Dobkin BH et al (2004) Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. NeuroImage 23(1):370–381

    Article  PubMed  Google Scholar 

  22. Rehme AK, Eickhoff SB, Rottschy C et al (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. NeuroImage 59:2771–2782

    Article  PubMed  Google Scholar 

  23. Thomas CG, Harshman RA, Menon RS (2002) Noise reduction in BOLD-based fMRI using component analysis. NeuroImage 17:1521–1537

    Article  PubMed  Google Scholar 

  24. Blatow M, Reinhardt J, Riffe K et al (2011) Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 Tesla. J Magn Reson Imaging 34:429–437

    Article  PubMed  Google Scholar 

  25. Bell A, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  CAS  PubMed  Google Scholar 

  26. Barriga ES, Pattichis M et al (2007) Spatiotemporal independent component analysis for the detection of functional responses in cat retinal images. IEEE Trans Med Imaging 26(8):1035–1045

    Article  PubMed  Google Scholar 

  27. Naik GR, Arjunan S (2011) Applications of ICA and fractal dimension in sEMG signal processing for subtle movement analysis: a review. Australas Phys Eng Sci Med 34:179–193

    Article  PubMed  Google Scholar 

  28. Ghasemi M, Mahloojifar A (2010) fMRI data analysis by blind source separation algorithms: a comparison study for nongaussian properties. Proceedings of ICEE, Isfahan

    Google Scholar 

  29. Muller K-R, Vigario R (2004) Blind source separation techniques for decomposing event-related brain signals. Int J Bifurcat Chaos 14(2):773–791

    Article  Google Scholar 

  30. Esposito F, Formisano E, Seifritz E et al (2002) Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used. Hum Brain Mapp 16:146–157

    Article  PubMed  Google Scholar 

  31. Amari S et al (1996) A new learning algorithm for blind signal separation, advances in neural information processing systems 8. MIT press, Cambridge, pp 757–763

    Google Scholar 

  32. Friston KJ, Holmes AP, Worsley K et al (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  33. Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. Neuroimage 6:93–103

    Article  CAS  PubMed  Google Scholar 

  34. Jonathan P (2010) An fMRI study of the differences in brain activity during active ankle dorsiflexion and plantarflexion. Brain Imaging Behav 4(2):121–131

    Article  Google Scholar 

  35. Ciccarelli O, Toosy AT, Marsden JF et al (2006) Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. J Neurol 253:882–891

    Article  CAS  PubMed  Google Scholar 

  36. Enzinger C, Johansen-Berg H, Dawes H et al (2008) Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke 39:1507–1513

    Article  PubMed  Google Scholar 

  37. Katschnig P et al (2011) Altered functional organization of the motor system related to ankle movements in Parkinson’s disease: insights from functional MRI. J Neural Trans 118:783–793

    Article  Google Scholar 

  38. Semendeferi K, Armstrong E, Schleicher A et al (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114(3):224–241

    Article  CAS  PubMed  Google Scholar 

  39. Critchley HD, Wiens S, Rotshtein P et al (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7(2):189–195

    Article  CAS  PubMed  Google Scholar 

  40. Lamb K, Gallagher K, McColl R et al (2007) Exercise-induced decrease in insular cortex rCBF during postexercise hypotension. Med Sci Sports Exerc 39(4):672–679

    Article  PubMed  Google Scholar 

  41. Snell RS (2003) Neuroanatomia Clinica (Spanish Edition). Editorial Medica Panamericana. ISBN 950-06-2049-9

  42. Pickles JO (2012) An Introduction to the physiology of hearing, 4th edn. Emerald Group Publishing Limited, Bingley, pp 215–217

    Google Scholar 

  43. Hewitt, John (2013) Predicting repeat offenders with brain scans: you be the judge. www.Medicalxpress.com. Retrieved 26 Mar 2013

  44. Jackson PL, Brunet E, Meltzoff AN, Decety J (2006) Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain: an event-related fMRI study. Neuropsychologia 44:752–761

    Article  PubMed  Google Scholar 

  45. Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA (2007) Paul Broca’s historic cases: high resolution mr imaging of the brains of Leborgne and Lelong. Brain 130(5):1432–1441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was grants from the natural Science Foundation of China (50907041) and Liaoning Provincial Department of Education research projects (201134120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baodong Bai or Jian Liu.

Appendix

Appendix

StICA algorithm process is as follows

  1. (1)

    Initialize the unmixing matrix W S, orthogonalization W S . \(W_{T} = (W_{S}^{\text{T}} )^{ - 1} \varLambda^{ - 1}\)

  2. (2)

    Calculate \({\mathbf{y}}_{S} = {\mathbf{W}}_{{\mathbf{S}}} {\mathbf{X}}_{{\mathbf{S}}}\), \({\mathbf{y}}_{T} = {\mathbf{W}}_{T} {\mathbf{X}}_{{\mathbf{T}}}\)

  3. (3)

    Use Infomax algorithm and select the sigmoid as a nonlinear function g (·)

    $$\begin{gathered} g({\mathbf{y}}_{S} ) = (1 + e^{{ - {\mathbf{y}}_{S} }} )^{ - 1} \hfill \\ g({\mathbf{y}}_{T} ) = (1 + e^{{ - {\mathbf{y}}_{T} }} )^{ - 1} \hfill \\ \end{gathered}$$
  4. (4)

    Calculate regulation increment

    $$\varDelta {\mathbf{W}}_{{\mathbf{S}}} = \mu \left\{ \begin{gathered} \alpha \left[ {{\mathbf{I}} + (1 - 2g({\mathbf{y}}_{{\mathbf{S}}} )){\mathbf{y}}_{{\mathbf{S}}}^{\text{T}} } \right] + \hfill \\ (1 - \alpha )\left[ {{\mathbf{I}} + \left( {1 - 2g({\mathbf{y}}_{{\mathbf{T}}} )} \right){\mathbf{y}}_{{\mathbf{T}}}^{\text{T}} } \right] \cdot \left( {\varLambda^{ - 2} } \right) \hfill \\ \end{gathered} \right\}{\mathbf{W}}_{{\mathbf{S}}}$$
  5. (5)

    Update weight value \({\mathbf{W}}_{S}^{ + } = {\mathbf{W}}_{{\mathbf{S}}} + \varDelta {\mathbf{W}}_{{\mathbf{S}}}\) \({\mathbf{W}}_{{\mathbf{S}}}^{ + }\), orthogonalization .\({\mathbf{W}}_{{\mathbf{T}}}^{ + } = {\mathbf{W}}_{S}^{ + } \varLambda^{ - 1}\), orthogonalization \({\mathbf{W}}_{{\mathbf{T}}}^{ + }\)

  6. (6)

    Judge convergence or not

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, B., Liu, J., Ke, L. et al. Spatiotemporal independent component analysis combine general linear model applied to fMRI for eliminating neural noise. Australas Phys Eng Sci Med 37, 121–132 (2014). https://doi.org/10.1007/s13246-014-0242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0242-4

Keywords

Navigation