Skip to main content
Log in

An fMRI Study of the Differences in Brain Activity During Active Ankle Dorsiflexion and Plantarflexion

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Little is known regarding the differences in active cortical and subcortical systems during opposing movements of an agonist-antagonist muscle group. The objective of this study was to characterize the differences in cortical activation during active ankle dorsiflexion and plantarflexion using functional MRI (fMRI). Eight right-handed healthy adults performed auditorily cued right ankle dorsiflexions and plantarflexions during fMRI. Differences in activity patterns between dorsiflexion and plantarflexion during fMRI were assessed using between- and within-subject voxel-wise t-tests. Results indicated that ankle dorsiflexion recruited significantly more regions in left M1, the supplementary motor area (SMA) bilaterally, and right cerebellum. Both movements activated similar left hemisphere regions in the putamen and thalamus. Dorsiflexion activated additional areas in the right putamen. Results suggest that ankle dorsiflexion and plantarflexion may be controlled by both shared and independent neural circuitry. This has important implications for functional investigations of gait pathology and how rehabilitation may differentially affect each movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Alkadhi, H., Crelier, G. R., Boendermaker, S. H., Golay, X., Hepp-Reymond, M. C., & Kollias, S. S. (2002). Reproducibility of primary motor cortex somatotopy under controlled conditions. AJNR. American Journal of Neuroradiology, 23(9), 1524–1532.

    PubMed  Google Scholar 

  • Anderson, F. C., & Pandy, M. G. (2003). Individual muscle contributions to support in normal walking. Gait Posture, 17(2), 159–169.

    Article  PubMed  Google Scholar 

  • Armstrong, D. M., & Drew, T. (1984). Locomotor-related neuronal discharges in cat motor cortex compared with peripheral receptive fields and evoked movements. Journal of Physiology, 346, 497–517.

    CAS  PubMed  Google Scholar 

  • Ball, T., Schreiber, A., Feige, B., Wagner, M., Lucking, C. H., & Kristeva-Feige, R. (1999). The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage, 10(6), 682–694.

    Article  CAS  PubMed  Google Scholar 

  • Beloozerova, I. N., & Sirota, M. G. (1993). The role of the motor cortex in the control of vigour of locomotor movements in the cat. Journal of Physiology, 461, 27–46.

    CAS  PubMed  Google Scholar 

  • Capaday, C. (2002). The special nature of human walking and its neural control. Trends in Neurosciences, 25(7), 370–376.

    Article  CAS  PubMed  Google Scholar 

  • Capaday, C., Lavoie, B. A., Barbeau, H., Schneider, C., & Bonnard, M. (1999). Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. Journal of Neurophysiology, 81(1), 129–139.

    CAS  PubMed  Google Scholar 

  • Chainay, H., Krainik, A., Tanguy, M. L., Gerardin, E., Le Bihan, D., & Lehericy, S. (2004). Foot, face and hand representation in the human supplementary motor area. NeuroReport, 15(5), 765–769.

    Article  PubMed  Google Scholar 

  • Ciccarelli, O., Toosy, A. T., Marsden, J. F., Wheeler-Kingshott, C. M., Sahyoun, C., Matthews, P. M., et al. (2005). Identifying brain regions for integrative sensorimotor processing with ankle movements. Experimental Brain Research, 166(1), 31–42.

    Article  CAS  Google Scholar 

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Dietz, V. (2003). Spinal cord pattern generators for locomotion. Clinical Neurophysiology, 114(8), 1379–1389.

    Article  CAS  PubMed  Google Scholar 

  • Dobkin, B. H., Firestine, A., West, M., Saremi, K., & Woods, R. (2004). Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage, 23(1), 370–381.

    Article  PubMed  Google Scholar 

  • Drew, T., Jiang, W., Kably, B., & Lavoie, S. (1996). Role of the motor cortex in the control of visually triggered gait modifications. Canadian Journal of Physiology and Pharmacology, 74(4), 426–442.

    Article  CAS  PubMed  Google Scholar 

  • Drew, T., Kalaska, J., & Krouchev, N. (2008). Muscle synergies during locomotion in the cat: a model for motor cortex control. Journal of Physiology, 586(5), 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  • Duysens, J., & Van de Crommert, H. W. (1998). Neural control of locomotion; The central pattern generator from cats to humans. Gait Posture, 7(2), 131–141.

    Article  PubMed  Google Scholar 

  • Earhart, G. M., & Bastian, A. J. (2001). Selection and coordination of human locomotor forms following cerebellar damage. Journal of Neurophysiology, 85(2), 759–769.

    CAS  PubMed  Google Scholar 

  • Enzinger, C., Johansen-Berg, H., Dawes, H., Bogdanovic, M., Collett, J., Guy, C., et al. (2008). Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke, 39(5), 1507–1513.

    Article  PubMed  Google Scholar 

  • Enzinger, C., Dawes, H., Johansen-Berg, H., Wade, D., Bogdanovic, M., Collett, J., et al. (2009). Brain activity changes associated with treadmill training after stroke. Stroke, 40(7), 2460–2467.

    Article  PubMed  Google Scholar 

  • Gopinath, K., Crosson, B., McGregor, K., Peck, K., Chang, Y. L., Moore, A., et al. (2008). Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI. Hum Brain Mapp.

  • Johannsen, P., Christensen, L. O., Sinkjaer, T., & Nielsen, J. B. (2001). Cerebral functional anatomy of voluntary contractions of ankle muscles in man. Journal of Physiology, 535(Pt 2), 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Jueptner, M., & Weiller, C. (1998). A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain, 121(Pt 8), 1437–1449.

    Article  PubMed  Google Scholar 

  • Kapreli, E., Athanasopoulos, S., Papathanasiou, M., Van Hecke, P., Strimpakos, N., Gouliamos, A., et al. (2006). Lateralization of brain activity during lower limb joints movement. An fMRI study. Neuroimage, 32(4), 1709–1721.

    Article  PubMed  Google Scholar 

  • Kapreli, E., Athanasopoulos, S., Papathanasiou, M., Van Hecke, P., Keleki, D., Peeters, R., et al. (2007). Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex, 43(2), 219–232.

    Article  PubMed  Google Scholar 

  • Karabanov, A., Blom, O., Forsman, L., & Ullen, F. (2008). The dorsal auditory pathway is involved in performance of both visual and auditory rhythms. Neuroimage.

  • Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fMRI study of response inhibition. Human Brain Mapping, 12(2), 100–109.

    Article  CAS  PubMed  Google Scholar 

  • Lotze, M., Montoya, P., Erb, M., Hulsmann, E., Flor, H., Klose, U., et al. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Journal of Cognitive Neuroscience, 11(5), 491–501.

    Article  CAS  PubMed  Google Scholar 

  • Luft, A. R., Smith, G. V., Forrester, L., Whitall, J., Macko, R. F., Hauser, T. K., et al. (2002). Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Human Brain Mapping, 17(2), 131–140.

    Article  PubMed  Google Scholar 

  • Maillard, L., Ishii, K., Bushara, K., Waldvogel, D., Schulman, A. E., & Hallett, M. (2000). Mapping the basal ganglia: fMRI evidence for somatotopic representation of face, hand, and foot. Neurology, 55(3), 377–383.

    CAS  PubMed  Google Scholar 

  • Mochizuki, G., Hoque, T., Mraz, R., Macintosh, B. J., Graham, S. J., Black, S. E., et al. (2009). Challenging the brain: exploring the link between effort and cortical activation. Brain Research, 1301, 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Nadeau, S., Gravel, D., Arsenault, A. B., & Bourbonnais, D. (1999). Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clinical Biomechanics (Bristol, Avon), 14(2), 125–135.

    Article  CAS  Google Scholar 

  • Neptune, R. R., Kautz, S. A., & Zajac, F. E. (2001). Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics, 34(11), 1387–1398.

    Article  CAS  PubMed  Google Scholar 

  • Neptune, R. R., Sasaki, K., & Kautz, S. A. (2008). The effect of walking speed on muscle function and mechanical energetics. Gait Posture, 28(1), 135–143.

    Article  PubMed  Google Scholar 

  • Newton, J. M., Dong, Y., Hidler, J., Plummer-D’Amato, P., Marehbian, J., Albistegui-Dubois, R. M., et al. (2008). Reliable assessment of lower limb motor representations with fMRI: use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques. Neuroimage, 43(1), 136–146.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Parent, A., & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research. Brain Research Reviews, 20(1), 91–127.

    Article  CAS  PubMed  Google Scholar 

  • Parvataneni, K., Olney, S. J., & Brouwer, B. (2007). Changes in muscle group work associated with changes in gait speed of persons with stroke. Clinical Biomechanics (Bristol, Avon), 22(7), 813–820.

    Article  Google Scholar 

  • Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., & Matthews, P. M. (2004). Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. Neuroimage, 21(2), 568–575.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, M., Curt, A., Jensen, L., & Dietz, V. (1997). Corticospinal input in human gait: modulation of magnetically evoked motor responses. Experimental Brain Research, 115(2), 234–246.

    Article  CAS  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thiem Medical.

    Google Scholar 

  • Winter, D. A. (1983). Biomechanical motor patterns in normal walking. Journal of Motor Behavior, 15(4), 302–330.

    CAS  PubMed  Google Scholar 

  • Yeterian, E. H., & Pandya, D. N. (1998). Corticostriatal connections of the superior temporal region in rhesus monkeys. Journal of Comparative Neurology, 399(3), 384–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is based upon work supported by Center of Excellence grant # B3149C and Senior Research Career Scientist Award # B3470S (to BC) from the Office of Research and Development, Rehabilitation Research and Development Service, Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Trinastic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinastic, J.P., Kautz, S.A., McGregor, K. et al. An fMRI Study of the Differences in Brain Activity During Active Ankle Dorsiflexion and Plantarflexion. Brain Imaging and Behavior 4, 121–131 (2010). https://doi.org/10.1007/s11682-010-9091-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-010-9091-2

Keywords

Navigation