Skip to main content
Log in

Embedded sensor insole for wireless measurement of gait parameters

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This work presents the development of a portable, wireless activity monitoring system for the estimation of biomechanical gait parameters. The system uses a pair of instrumented insoles able to measure pressure from different points of the foot including four commercial piezoresistive pressure sensors and a three-axis accelerometer, all together integrated in the insole to determine foot forces during stance and swing phases. The system includes two kinds of analysis data, one on line with a RF communications to a computer, and another off line reading the data from SD memory card. Our system has been validated and tested in different trials, extracting several features during walking for ten participants by means of the combined information from the two kinds of sensors. With the combined data from the complete set of sensors, we can obtain highly valuable information on foot movement during the non-contact period, such as supination or pronation characteristics or anomalous movement during flight time. From our preliminary results, the variation of the lateral acceleration of the foot seems to be correlated with the amount of supination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Martínez-Martí F, García-Díaz SG, García-Jiménez J, Martínez-García MS, Martínez-Olmos A, Carvajal MA (2013) IWBBIO 2013 Proceedings of the international work-conference on bioinformatics and biomedical engineering, pp 657–665

  2. Whittle MW (2003) Gait analysis: an introduction. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Groot A, Decker R, Reed K (2009) Third joint eurohaptics conference and symposium on haptic interfaces, pp 190–195

  4. Johanson M, Cooksey A, Hillier C, Kobbeman H, Stambaugh A (2006) Heel lifts and the stance phase of gait in subjects with limited ankle dorsiflexion. J Athl Train 2:159

    Google Scholar 

  5. Urry S (1999) Plantar pressure-measurement sensors. Measurement Sci Technol 10(1):R16

    Article  CAS  Google Scholar 

  6. Morris SJ, Paradiso JA (2002) Proceedings of the second joint engineering in medicine and biology 24th annual conference and the annual fall meeting of the biomedical engineering society EMBS/BMES Conference vol 3, pp 2468–2469

  7. Chen M, Huang B, Xu Y (2008) Proceedings IEEE international conference on robotics and automation, pp 2019–2024

  8. Tareco J, Miller N, MacWilliams B, Michelson J (1999) Foot & ankle international / American orthopaedic foot and ankle society [and] Swiss foot and ankle society 20(1071–1007):456

  9. Mueller M, Hastings M, Commean P, Smith K, Pilgram T, Robertson D, Johnson J (2003) Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. J Biomech 36(7):1009

    Article  PubMed  Google Scholar 

  10. Hodgson B, Tis L, Cobb S, McCarthy S, Higbie E (2006) The effect of two different custom-molded corrective orthotics on plantar pressure. Sport Rehabil 1:33

    Google Scholar 

  11. Frederick E, Hartner K (1993) The evolution of foot pressure measurements. Sens Mag 6:30

    Google Scholar 

  12. Gioftsidou A, Malliou P, Pafis G, Beneka A, Godolias G, Maganaris C (2006) The effects of soccer training and timing of balance training on balance ability. Eur Appl Physiol 6:659

    Article  Google Scholar 

  13. Wong Pl, Chamari K, Chaouachi A, Mao DW, Wislff U, Hong Y (2007) Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements. Br J Sports Med 41(2):84

    Article  PubMed Central  PubMed  Google Scholar 

  14. Girard O, Eicher F, Fourchet F, Micallef J, Millet G (2007) Effects of the playing surface on plantar pressures and potential injuries in tennis. Br Sports Med 41:733

    Article  CAS  Google Scholar 

  15. Queen RM, Haynes BB, Hardaker WM, Garrett WE (2007) Forefoot loading during three athletic tasks. Am J Sports Med 35(4):630

    Article  PubMed  Google Scholar 

  16. Kuntze G, Pias M, Bezodis I, Kerwin D, Coulouris G, Irwin G (2009) in 27th International Conference On Biomechanics in Sports

  17. Michahelles F, Schiele B (2005) Sensing and monitoring professional skiers. IEEE Pervasive Comput 4(3):40

    Article  Google Scholar 

  18. Saito M, Nakajima K, Takano C, Ohta Y, Sugimoto C, Ezoe R, Sasaki K, Hosaka H, Ifukube T, Ino S, Yamashita K (2011) An in-shoe device to measure plantar pressure during daily human activity. Medl Eng Phys 33(5):638

    Article  CAS  PubMed  Google Scholar 

  19. Dugan S, Bhat K (2005) Biomechanics and analysis of running gait. Med Rehabil Clin N Am 16:603

    Article  Google Scholar 

  20. Lavery LA, Vela SA, Fleischli JG, Armstrong DG, Lavery DC (1997) Reducing plantar pressure in the neuropathic foot: acomparison of footwear. Diabetes Care 20(11):1706

    Article  CAS  PubMed  Google Scholar 

  21. Mueller M (1999) Application of plantar pressure assessment in footwear and insert design. J orthop sports phys ther 29(0190-6011):747

    Article  CAS  PubMed  Google Scholar 

  22. Cheung R, Ng G (2008) Influence of dIfferent footwear on force of landing during running. Phys Ther 88:620

    Article  PubMed  Google Scholar 

  23. Purcell B, Channells J, James D, Barret R (2006) Proceedings of SPIE: microelectronics, MEMS, and nanotechnology

  24. Stess RM, Jensen SR, Mirmiran R (1997) Reducing plantar pressure in the neuropathic foot: a comparison of footwear. Diabetes Care 20(5):855

    Article  CAS  PubMed  Google Scholar 

  25. McPoil TG, Yamada W, Smith W, Cornwall M (2001) The distribution of plantar pressures in American Indians with diabetes mellitus. J Am Podiatr Med Assoc 91(6):280

    Article  CAS  PubMed  Google Scholar 

  26. Kanatli U, Yetkin H, Bolukbasi S (2003) Evaluation of the transverse metatarsal arch of the foot with gait analysis. Arch Orthop Trauma Surg 123:148

    PubMed  Google Scholar 

  27. Kernozek T, Sterriker S (2002) Chevron (Austin) distal metatarsal osteotomy for hallux valgus: comparison of pre- and post-surgical characteristics. Foot Ankle Int 23:503

    PubMed  Google Scholar 

  28. Martínez-Nova A, Cuevas-García JC, Pascual-Huerta J, Sánchez-Rodríguez R (2007) BioFoot in-shoe system: normal values and assessment of the reliability and repeatability. The Foot 17(4):190

    Article  Google Scholar 

  29. Lemaire ED, Biswas A, Kofinan J (2006) Proceedings 28th annual international conference of the IEEE engineering in medicine and biology society EMBS ’06, pp 4465–4468

  30. Catalfamo P, Moser D, Ghoussayni S, Edwins D (2008) Detections of gait events using and F-scan in-shoe pressure measurement system. Gait Posture 3:420

    Article  Google Scholar 

  31. Kong P, Heer HD (2009) Gait & Posture 29:143

    Article  Google Scholar 

  32. Kirtley C (2001) Proceedings of the 5th symposium on footwear biomechanics, Zuerich/Switzerland

  33. Paulick P, Djalilian H, Bachman M (2011) . In: Duffy V (ed.) Digital human modeling, lecture notes in computer science, vol. 6777. Springer, Berlin Heidelberg, pp. 171–177

  34. Bamberg S, Benbasat AY, Scarborough DM, Krebs DE, Paradiso JA (2008) Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed 12(4):413

    Article  PubMed  Google Scholar 

  35. Sazonova NA, Browning R, Sazonov ES (2011) Prediction of bodyweight and energy expenditure using point pressure and foot acceleration measurements. Open Biomed Eng J 5:110

    Article  PubMed Central  PubMed  Google Scholar 

  36. Microchip. Application note an1284, microchip wireless (miwi) application programming interface - miapp

  37. Microchip. Application note an1283, microchip wireless (miwi) media access controller-mimac

  38. Baronti P, Pillai P, Chook V, Chessa S, Gotta A, Hu Y (2007) Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Comput Commun 30:1655

    Article  Google Scholar 

  39. Jovanov E, Milenkovic A, Otto C, de Groen P (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J NeuroEng Rehabil 2(1):6

    Article  PubMed Central  PubMed  Google Scholar 

  40. Milenkovic A, Otto C, Jovanov E (2006) Wireless sensor networks for personal health monitoring: Issues and an implementation. Comput Commun 29(13–14):2521

    Article  Google Scholar 

  41. Wheeler A (2007) Commercial applications of wireless sensor networks using ZigBee. Commun Mag IEEE 45(4):70

    Article  Google Scholar 

  42. Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput Electron Agric 50(1):1

    Article  CAS  Google Scholar 

  43. Hausdorff JM, Ladin Z, Wei J (1995) Footswitch system for measurement of the temporal parameters of gait. Biomechanics 3:347

    Article  Google Scholar 

  44. Karnik T, Kralj A (1997) Simple gait assessment system. Gait and Posture 6:193–199

    Article  Google Scholar 

  45. Ounpuu S (1994) The biomechanics of walking and running. Clin Sports Med 13(0278–5919):843

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank José L. González Montesinos (Associate professor in Physical and Sports Activity) for his tips on fixing the pressure sensor in the instrumented insole and Carlos J. Carvajal Rodríguez (M.Sc. in Sports Science) for collaborating in data analysis. This work was funded by Junta de Andalucía (Spain), under Project P10-TIC5997. This project was partially supported by European Regional Development Funds (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Martínez-Martí.

Additional information

A preliminary version of this work was presented at the conference “IWBBIO 2013, Proceedings Granada, 18–20 March, 2013 [1]"

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Martí, F., Martínez-García, M.S., García-Díaz, S.G. et al. Embedded sensor insole for wireless measurement of gait parameters. Australas Phys Eng Sci Med 37, 25–35 (2014). https://doi.org/10.1007/s13246-013-0236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-013-0236-7

Keywords

Navigation