Skip to main content
Log in

Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of Radiological Sciences

  • Scientific Note
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Verellen D, De Ridder M, Linthout N et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7:949–960

    Article  PubMed  CAS  Google Scholar 

  2. Chen GT, Sharp GC, Mori S (2009) A review of image-guided radiotherapy. Radiol Phys Technol 2:1–12

    Article  PubMed  Google Scholar 

  3. Li H, Zhu XR, Zhang L et al (2008) Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients. Int J Radiat Oncol Biol Phys 71:916–925

    Article  PubMed  Google Scholar 

  4. Mori S, Endo M, Komatsu S et al (2007) Four-dimensional measurement of lung tumor displacement using 256-multi-slice CT-scanner. Lung Cancer 56:59–67

    Article  PubMed  Google Scholar 

  5. Rietzel E, Liu AK, Doppke KP et al (2006) Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys 66:287–295

    Article  PubMed  Google Scholar 

  6. Radiotherapy equipment–Coordinates, movements and scales. International Electrotechnical Commission: IEC 2008

  7. Aird EGA, Conway J (2002) CT simulation for radiotherapy treatment planning. Br J Radiol 75:937–949

    PubMed  CAS  Google Scholar 

  8. Ackerly T, Lancaster CM, Geso M et al (2011) Clinical accuracy of ExacTrac intracranial frameless stereotactic system. Med Phys 38:5040–5048

    Article  PubMed  CAS  Google Scholar 

  9. Hill DL, Batchelor PG, Holden M et al (2001) Medical image registration. Phys Med Biol 46:R1–R45

    Article  PubMed  CAS  Google Scholar 

  10. Minohara S, Fukuda S, Kanematsu N et al (2010) Recent innovations in carbon-ion radiotherapy. J Radiat Res (Tokyo) 51:385–392

    Article  Google Scholar 

  11. Okada T, Kamada T, Tsuji H et al (2010) Carbon ion radiotherapy: clinical experiences at National Institute of Radiological Science (NIRS). J Radiat Res (Tokyo) 51:355–364

    Article  Google Scholar 

  12. Furukawa T, Inaniwa T, Sato S et al (2007) Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys 34:1085–1097

    Article  PubMed  CAS  Google Scholar 

  13. Vasiliadis G, Antonatos S, Polychronakis M, et al. (2008) Gnort: high performance network intrusion detection using graphics processors. In Proceedings of the 11th International Symposium on Recent Advances in Intrusion Detection (RAID): pp 116–134

  14. Mori S, Kobayashi M, Kumagai M et al (2009) Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy. Radiol Phys Technol 2:40–45

    Article  PubMed  Google Scholar 

  15. Sharp GC, Kandasamy N, Singh H et al (2007) GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys Med Biol 52:5771–5783

    Article  PubMed  CAS  Google Scholar 

  16. Rohlfing T, Russakoff DB, Denzler J et al (2005) Progressive attenuation fields: fast 2D–3D image registration without precomputation. Med Phys 32:2870–2880

    Article  PubMed  Google Scholar 

  17. Siddon RL (1985) Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys 12:252–255

    Article  PubMed  CAS  Google Scholar 

  18. Spoerk J, Bergmann H, Wanschitz F et al (2007) Fast DRR splat rendering using common consumer graphics hardware. Med Phys 34:4302–4308

    Article  PubMed  Google Scholar 

  19. Schaefer-Prokop C, Neitzel U, Venema HW et al (2008) Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 18:1818–1830

    Article  PubMed  Google Scholar 

  20. Stahl M, Aach T, Dippel S (2000) Digital radiography enhancement by nonlinear multiscale processing. Med Phys 27:56–65

    Article  PubMed  CAS  Google Scholar 

  21. Goitein M, Abrams M, Rowell D et al (1983) Multi-dimensional treatment planning: II. Beam’s eye-view, back projection, and projection through CT sections. Int J Radiat Oncol Biol Phys 9:789–797

    Article  PubMed  CAS  Google Scholar 

  22. Yan H, Yin FF, Kim JH (2003) A phantom study on the positioning accuracy of the Novalis Body system. Med Phys 30:3052–3060

    Article  PubMed  Google Scholar 

  23. Verbakel WF, Lagerwaard FJ, Verduin AJ et al (2010) The accuracy of frameless stereotactic intracranial radiosurgery. Radiother Oncol 97:390–394

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, S., Inaniwa, T., Kumagai, M. et al. Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of Radiological Sciences. Australas Phys Eng Sci Med 35, 221–229 (2012). https://doi.org/10.1007/s13246-012-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0142-4

Keywords

Navigation