Skip to main content

Advertisement

Log in

A review of image-guided radiotherapy

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Image-guided radiotherapy (IGRT) is in the midst of a strong development and implementation cycle, stimulated by pioneering work performed in Japan. We present a review of the rationale, technology, and methodology of image guidance, as well as an overview of current work in IGRT at the Massachusetts General Hospital. The technology is rapidly evolving, and synergisms between the various acquisition approaches are converging to provide unparalleled information on target and normal tissue location and motion. With these new approaches to patient localization, we expect improved clinical results to be forthcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;25(8):938–46.

    Article  PubMed  Google Scholar 

  2. Dawson LA, et al. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys. 2005;62(4):1247–52.

    Article  PubMed  Google Scholar 

  3. Balter JM, et al. Daily targeting of intrahepatic tumors for radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52(1):266–71.

    Article  PubMed  Google Scholar 

  4. Hong TS, et al. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(3):779–88.

    Article  PubMed  Google Scholar 

  5. De Crevoisier R, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(4):965–73.

    Article  PubMed  Google Scholar 

  6. Ghilezan M, et al. Online image-guided intensity-modulated radiotherapy for prostate cancer: How much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys. 2004;60(5):1602–10.

    Article  PubMed  Google Scholar 

  7. Martinez AA, et al. Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int J Radiat Oncol Biol Phys. 2001;50(5):1226–34.

    Article  CAS  PubMed  Google Scholar 

  8. Millender LE, et al. Daily electronic portal imaging for morbidly obese men undergoing radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2004;59(1):6–10.

    Article  PubMed  Google Scholar 

  9. Barker JL Jr, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70.

    Article  PubMed  Google Scholar 

  10. Sonke JJ, Lebesque J, Van Herk M. Variability of four-dimensional computed tomography patient models. Int J Radiat Oncol Biol Phys. 2008;70(2):590–8.

    Article  PubMed  Google Scholar 

  11. Engelsman M, et al. How much margin reduction is possible through gating or breath hold? Phys Med Biol. 2005;50(3):477–90.

    Article  CAS  PubMed  Google Scholar 

  12. Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 2006;7:848–58.

    Article  PubMed  Google Scholar 

  13. White E, Kane G. Radiation medicine practice in the image-guided radiation therapy era: new roles and new opportunities. Semin Radiat Oncol. 2007;17(4):298–305.

    Article  PubMed  Google Scholar 

  14. Verellen D, De Ridder M, Storme G. A (short) history of image-guided radiotherapy. Radiother Oncol. 2008;86(1):4–13.

    Article  PubMed  Google Scholar 

  15. Gragoudas ES, et al. Proton irradiation of malignant melanoma of the ciliary body. Br J Ophthalmol. 1979;63(2):135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verhey LJ, et al. Precise positioning of patients for radiation therapy. Int J Radiat Oncol Biol Phys. 1982;8(2):289–94.

    Article  CAS  PubMed  Google Scholar 

  17. Biggs PJ, Goitein M, Russell MD. A diagnostic X ray field verification device for a 10 MV linear accelerator. Int J Radiat Oncol Biol Phys. 1985;11(3):635–43.

    Article  CAS  PubMed  Google Scholar 

  18. Shirato H, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48(4):1187–95.

    Article  CAS  PubMed  Google Scholar 

  19. Britton K, et al. Evaluation of inter-and intrafraction organ motion during IMRT for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med. 2005;23(1):14–24.

    Google Scholar 

  20. Uematsu M, et al. A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames. Int J Radiat Oncol Biol Phys. 1996;35(3):587–92.

    Article  CAS  PubMed  Google Scholar 

  21. Balter JM, Kessler ML. Imaging and alignment for image-guided radiation therapy. J Clin Oncol. 2007;25(8):931–7.

    Article  PubMed  Google Scholar 

  22. Guha C, et al. Tumor biology-guided radiotherapy treatment planning: gross tumor volume versus functional tumor volume. Semin Nucl Med. 2008;38(2):105–13.

    Article  PubMed  Google Scholar 

  23. Heron DE, et al. PET-CT in radiation oncology—the impact on diagnosis, treatment planning, and assessment of treatment response. Am J Clin Oncol-Cancer Clin Trials. 2008;31(4):352–62.

    Article  Google Scholar 

  24. Li G, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat. 2008;7(1):67–81.

    Article  CAS  PubMed  Google Scholar 

  25. Zanzonico P. PET-based biological imaging for radiation therapy treatment planning. Crit Rev Eukaryot Gene Expr. 2006;16(1):61–101.

    Article  CAS  PubMed  Google Scholar 

  26. Zapotoczna A, et al. Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia. 2007;9(6):455–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Achterberg N, Muller RG. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy. Med Phys. 2007;34(10):3926–42.

    Article  PubMed  Google Scholar 

  28. Beavis AW. Is tomotherapy the future of IMRT? Br J Radiol. 2004;77(916):285–95.

    Article  CAS  PubMed  Google Scholar 

  29. Jaffray D, et al. Review of image-guided radiation therapy. Expert Rev Anticancer Ther. 2007;7(1):89–103.

    Article  PubMed  Google Scholar 

  30. Webb S. The physical basis of IMRT and inverse planning. Br J Radiol. 2003;76(910):678–89.

    Article  CAS  PubMed  Google Scholar 

  31. Xing L, et al. Overview of image-guided radiation therapy. Med Dosim. 2006;31(2):91–112.

    Article  PubMed  Google Scholar 

  32. Chang JY, et al. Image-guided radiation therapy for non-small cell lung cancer. J Thorac Oncol. 2008;3(2):177–86.

    Article  PubMed  Google Scholar 

  33. Devisetty K, Chen LF, Chmura SJ. Evolving use of radiotherapy and radiosurgery in the treatment of pituitary adenomas. Expert Rev Anticancer Ther. 2006;6(9):S93–8.

    Article  PubMed  Google Scholar 

  34. Drummond KJ, Zhu JJG, Black PM. Meningiomas: updating basic science, management, and outcome. Neurologist. 2004;10(3):113–30.

    Article  PubMed  Google Scholar 

  35. Fennessy FM, et al. MR imaging—guided interventions in the genitourinary tract: an evolving concept. Radiol Clin North Am. 2008;46(1):149–66.

    Google Scholar 

  36. Kurtz JM, Kinkel K. Breast conservation in the 21st century. Eur J Cancer. 2000;36(15):1919–24.

    Article  CAS  PubMed  Google Scholar 

  37. Langer CJ, et al. Cooperative group portfolio in locally advanced non-small-cell lung cancer: Are we making progress? Clin Lung Cancer. 2008;9(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  38. Lefkopoulos D, et al. Present and future of the Image Guided Radiotherapy (IGRT) and its applications in lung cancer treatment. Cancer Radiother. 2007;11(1–2):23–31.

    Article  CAS  PubMed  Google Scholar 

  39. Lohr F, et al. Image-guided radiotherapy for prostate cancer. Aktuelle Urologie. 2007;38(5):386–91.

    Article  CAS  PubMed  Google Scholar 

  40. Park C, Zhang G, Choy H. 4-Dimensional conformal radiation therapy: image-guided radiation therapy and its application in lung cancer treatment. Clin Lung Cancer. 2006;8(3):187–94.

    Article  PubMed  Google Scholar 

  41. Timmerman RD, Forster KM, Cho LC. Extracranial stereotactic radiation delivery. Semin Radiat Oncol. 2005;15(3):202–7.

    Article  PubMed  Google Scholar 

  42. Vogelbaum MA, Suh JH. Resectable brain metastases. J Clin Oncol. 2006;24(8):1289–94.

    Article  PubMed  Google Scholar 

  43. Yamada Y, Lovelock DM, Bilsky MH. A review of image-guided intensity-modulated radiotherapy for spinal tumors. Neurosurgery. 2007;61(2):226–35.

    Article  PubMed  Google Scholar 

  44. Yamada Y, et al. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys. 2005;62(1):53–61.

    Article  PubMed  Google Scholar 

  45. Yamada Y, Lovelock M, Bilsky MH. Image-guided intensity-modulated radiation therapy of spine tumors. Curr Neurol Neurosci Rep. 2006;6(3):207–11.

    Article  PubMed  Google Scholar 

  46. Bortfeld T, Chen G. Introduction: intrafractional organ motion and its management. Semin Radiat Oncol. 2004;14(1):1.

    Article  Google Scholar 

  47. Jaffray D. Image-guided radiation therapy: from concept to practice. Semin Radiat Oncol. 2007;17(4):243–306.

    Article  PubMed  Google Scholar 

  48. Kessler M. Image registration and data fusion in radiation therapy. Br J Radiol. 2006;79:S99–108.

    Article  PubMed  Google Scholar 

  49. Swerdloff S. Data handling in radiation therapy in the age of image-guided radiation therapy. Semin Radiat Oncol. 2007;17(5):287–92.

    Article  PubMed  Google Scholar 

  50. Berbeco RI, et al. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic X-ray systems with flat-panel detectors. Phys Med Biol. 2004;49(2):243–55.

    Google Scholar 

  51. Pouliot J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(2):552–60.

    Article  PubMed  Google Scholar 

  52. Pouliot J. Megavoltage imaging, megavoltage cone beam CT and dose-guided radiation therapy. Front Radiat Ther Oncol. 2007;40:132–42.

    Google Scholar 

  53. Mackie TR, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(1):89–105.

    Article  PubMed  Google Scholar 

  54. Berbeco RI, et al. Clinical feasibility of using an epid in cine mode for image-guided verification of stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):258–66.

    Article  PubMed  Google Scholar 

  55. Mackie TR. History of tomotherapy. Phys Med Biol. 2006;51(13):R427–53.

    Article  CAS  PubMed  Google Scholar 

  56. Raaymakers B, et al. Integrating a MRI scanner with a 6 MV radiotehrapy accelerator. Phys Med Biol. 2007;49:4109–18.

    Article  Google Scholar 

  57. Dempsey JF. http://www.viewray.com, cited 2008.

  58. Balter JM, Cao Y. Advanced technologies in image-guided radiation therapy. Semin Radiat Oncol. 2007;17(4):293–7.

    Article  PubMed  Google Scholar 

  59. Lee SW, et al. Clinical assessment and characterization of a dual-tube kilovoltage X-ray localization system in the radiotherapy treatment room. J Appl Clin Med Phys. 2008;9(1):1–15.

    Google Scholar 

  60. Jin JY, et al. Evaluation of residual patient position variation for spinal radiosurgery using the Novalis image guided system. Med Phys. 2008;35(3):1087–93.

    Article  PubMed  Google Scholar 

  61. Teh BS, et al. Versatility of the novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat. 2007;6(4):347–54.

    Article  PubMed  Google Scholar 

  62. Ernst-Stecken A, et al. Hypofractionated stereotactic radiotherapy to the rat hippocampus—determination of dose response and tolerance. Strahlentherapie Und Onkologie. 2007;183(8):440–6.

    Article  PubMed  Google Scholar 

  63. Soete G, et al. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys. 2007;67(3):823–7.

    Article  PubMed  Google Scholar 

  64. Verellen D, et al. Breathing-synchronized irradiation using stereoscopic KV-imaging to limit influence of interplay between leaf motion and organ motion in 3D-CRT and IMRT: dosimetric verification and first clinical experience. Int J Rad Oncol Biol Phys. 2006;66(4):S108–19.

    Article  Google Scholar 

  65. Wurm RE, et al. Image guided respiratory gated hypofractionated Stereotactic Body Radiation Therapy (H-SBRT) for liver and lung tumors: initial experience. Acta Oncologica. 2006;45(7):881–9.

    Article  CAS  PubMed  Google Scholar 

  66. Yan H, Yin FF, Kim JH. A phantom study on the positioning accuracy of the Novalis Body system. Med Phys. 2003;30(12):3052–60.

    Article  PubMed  Google Scholar 

  67. Watchman CJ, et al. Patient positioning using implanted gold markers with the novalis body system in the thoracic spine. Neurosurgery. 2008;62(5 Suppl):A62–8 (discussion A68).

    Google Scholar 

  68. Fuller CD, et al. Method comparison of ultrasound and kilovoltage X-ray fiducial marker imaging for prostate radiotherapy targeting. Phys Med Biol. 2006;51(19):4981–93.

    Google Scholar 

  69. Ryu SI, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery. 2001;49(4):838–46.

    CAS  PubMed  Google Scholar 

  70. Seppenwoolde Y, et al. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–84.

    Article  PubMed  Google Scholar 

  71. Shiu AS, et al. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys. 2003;57(3):605–13.

    Article  PubMed  Google Scholar 

  72. Amies C, et al. A multi-platform approach to image guided radiation therapy (IGRT). Med Dosim. 2006;31(1):12–9.

    Article  PubMed  Google Scholar 

  73. Charlie CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31(1):30–9.

    Article  Google Scholar 

  74. Wong JR, et al. Image-guided radiotherapy for prostate cancer by CT–linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys. 2005;61(2):561–9.

    Google Scholar 

  75. Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31(1):30–9.

    Article  PubMed  Google Scholar 

  76. Thieke C, et al. Kilovoltage CT using a linac–CT scanner combination. Br J Radiol. 2006;79(Spec No 1):S79–86.

    Google Scholar 

  77. Lattanzi J, et al. Ultrasound-based stereotactic guidance in prostate cancer—quantification of organ motion and set-up errors in external beam radiation therapy. Comput Aided Surg. 2000;5(4):289–95.

    Google Scholar 

  78. Boda-Heggemann J, et al. Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70(4):1247–55.

    Article  PubMed  Google Scholar 

  79. Roeske JC, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys. 1995;33(5):1321–9.

    Article  CAS  PubMed  Google Scholar 

  80. Beard CJ, et al. Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys. 1996;34(2):451–8.

    Article  CAS  PubMed  Google Scholar 

  81. Melian E, et al. Variation in prostate position quantitation and implications for three-dimensional conformal treatment planning. Int J Radiat Oncol Biol Phys. 1997;38(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  82. Langen KM, et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(3):635–44.

    Article  CAS  PubMed  Google Scholar 

  83. Cury F, et al. Ultrasound-based image guided radiotherapy for prostate cancer—comparison of cross modality and intramodlaity methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(5):1562–7.

    Google Scholar 

  84. Bert C, et al. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys. 2006;64(4):1265–74.

    Article  PubMed  Google Scholar 

  85. Bert C, et al. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. Med Phys. 2005;32(9):2753–62.

    Article  PubMed  Google Scholar 

  86. Willoughby TR, et al. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2006;65(2):528–34.

    Article  PubMed  Google Scholar 

  87. Litzenberg DW, et al. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int J Radiat Oncol Biol Phys. 2007;68(4):1199–206.

    Article  PubMed  Google Scholar 

  88. Langen KM, et al. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys. 2008;71(4):1084–90.

    Article  PubMed  Google Scholar 

  89. Kupelian P, et al. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67(4):1088–98.

    Article  PubMed  Google Scholar 

  90. Bissonnette JP. Quality assurance of image-guidance technologies. Semin Radiat Oncol. 2007;17(4):278–86.

    Article  PubMed  Google Scholar 

  91. Herman MG, et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys. 2001;28(5):712–37.

    Article  CAS  PubMed  Google Scholar 

  92. Kutcher GJ, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21(4):581–618.

    Article  CAS  PubMed  Google Scholar 

  93. Mutic S, et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003;30(10):2762–92.

    Article  PubMed  Google Scholar 

  94. Yoo S, et al. A quality assurance program for the on-board imagers. Med Phys. 2006;33(11):4431–47.

    Article  PubMed  Google Scholar 

  95. van Herk M. Different styles of image-guided radiotherapy. Semin Radiat Oncol. 2007;17(4):258–67.

    Article  PubMed  Google Scholar 

  96. de Boer H, BJM H. eNAL: an extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. Int J Radiat Oncol Biol Phys. 2007;67(5):1586–95.

    Article  PubMed  Google Scholar 

  97. West JB, et al. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48(4):810–6 (discussion 816–7).

    Google Scholar 

  98. Fitzpatrick JM, West JB, Maurer CR Jr. Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging. 1998;17(5):694–702.

    Article  CAS  PubMed  Google Scholar 

  99. Gierga DP, et al. Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2008;70(4):1239–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George T. Y. Chen.

About this article

Cite this article

Chen, G.T.Y., Sharp, G.C. & Mori, S. A review of image-guided radiotherapy. Radiol Phys Technol 2, 1–12 (2009). https://doi.org/10.1007/s12194-008-0045-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-008-0045-y

Keywords

Navigation