Skip to main content
Log in

A study into the relationship between the measured penumbra and effective source size in the modeling of the Pinnacle RTPS

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The effect of detector size in the broadening of the penumbra on the model in the Pinnacle RTPS is investigated. A second order polynomial was devised to correlate the source size parameter with the RTPS-calculated penumbra. The optimal source size parameter was calculated for penumbra measurements based on the diamond detector and a standard ionization chamber (IC). This work was done for Jaw fields, MLC fields with a leaf end radius of 8 cm, and MLC fields with a leaf end radius of 12 cm. The optimum source size of the 8 cm MLC fields matched the jaw fields, and an average (based on field sizes studied) of 1.1 mm for the diamond detector data and 2.4 mm for the ionization chamber was established. The effect of this overestimation of the source size parameter based on detector-induced penumbra broadening was considered for a clinical IMRT prostate plan by using two models (diamond and IC). There were differences in the DVH of the PTV and of OARs but these effects were of negligible clinical significance. Dose difference distributions showed dose difference areas to be in penumbra regions of the segments, with larger dose differences where penumbras intersected and/or there was a significant weighting on the segment. Gamma analysis was also performed between the two plans, and was found to increase the amount of fail rates significantly for both 2%/2 mm and 3%/3 mm criteria. This decreases the sensitivity of IMRT QA in the detection of systematic errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IMRT-CWG (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880–914

    Article  Google Scholar 

  2. Laub WU, Wong T (2003) The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 30:341–347

    Article  PubMed  CAS  Google Scholar 

  3. Metcalfe P, Kron T, Elliott A, Wong T (1993) Dosimetry of 6-MV x-ray beam penumbra. Med Phys 20:1439–1445

    Article  PubMed  CAS  Google Scholar 

  4. Dawson DJ, Schroeder NJ, Hoya JD (1985) Penumbral measurements in water for high-energy x rays. Med Phys 13:101

    Article  Google Scholar 

  5. Das IJ, Ding GX, Ahnesjo A (2007) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215

    Article  Google Scholar 

  6. Garcia-Vicente F, Bejar MJ, Perez L, Torres JJ (2004) Clinical impact of the detector size effect in 3D-CRT. Radiother Oncol 74:315–322

    Article  PubMed  Google Scholar 

  7. Sahoo N, Kazi AM, Hoffman M (2008) Semi-empirical procedures for correcting detector size effect on clinical MV x-ray beam profiles. Med Phys 35:5124–5133

    Article  PubMed  Google Scholar 

  8. Charland P, El-khatib E, Wolters J (1998) The use of deconvolution and total least squares in recovering a radiation detector line spread function. Med Phys 25:152–160

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Vicente F, Delgado JM, Peraza C (1997) Experimental determination of the convolution kernel for the study of the spatial response of a detector. Med Phys 25:202

    Article  Google Scholar 

  10. Pappas E, Maris TG, Papadakis A et al (2006) Experimental determination of the effect of detector size on profile measurements in narrow photon beams. Med Phys 33:3700–3710

    Article  PubMed  CAS  Google Scholar 

  11. AAPM (1994) Americal Association of Physicists (AAPM) Task Group 40: Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee Task Group 40. Med Phys 21:582–618

    Google Scholar 

  12. Das IJ, Cheng C-W, Watts RJ et al (2008) Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys 35:4186–4214

    Article  PubMed  Google Scholar 

  13. Laboratories A (1999) Pinnacle3 physics guide: external beam and brachytherapy physics, P/N 9201-2048A Rev. A (Version 4.2). ADAC Laboratories, Milpitas

  14. Bedford JL, Childs PJ, Hansen VN, Mosleh-shirazi MA, Verhaegen F, Warrington AP (2003) Commissioning and quality assurance of the Pinnacle3 radiotherapy treatment planning system for external beam photons. Br J Radiol 76:163–176

    Article  PubMed  CAS  Google Scholar 

  15. Starkschall G, Steadham RE, Popple RA, Ahmad S, Rosen II (1999) Beam-commissioning methodology for a three-dimensional convolution/superposition photon dose algorithm. J Appl Clin Med Phys 1:8–26

    Article  Google Scholar 

  16. Jaffray DA, Battista JJ, Fenster A, Munro P (1993) X-ray sources of medical linear accelerators: focal and extra-focal radiation. Med Phys 20:1417

    Article  PubMed  CAS  Google Scholar 

  17. Yan G, Fox C, Liu C, Li JG (2008) The extraction of true profiles for TPS commissioning and its impact on IMRT patient-specific QA. Med Phys 35:3661–3670

    Article  PubMed  Google Scholar 

  18. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661

    Article  PubMed  CAS  Google Scholar 

  19. Clark BG, Teke T, Otto K (2006) Penumbra evaluation of the Varian Millennium and BrainLAB M3 Multileaf collimator. Int J Radiat Oncol Biol Phys 66:S71–S75

    Google Scholar 

  20. Cadman P, McNutt T, Bzdusek K (2005) Validation of physics improvements for IMRT with a commercial treatment-planning system. J Appl Clin Med Phys 6:74–86

    Article  PubMed  Google Scholar 

  21. Williams MJ, Metcalfe P (2005) Verification of a rounded leaf-end MLC model used in a radiotherapy treatment planning system. Phys Med Biol 51:N65–N78

    Article  Google Scholar 

  22. Chang K-S, Yin F-F, Nie K-W (1996) The effect of detector size to the broadening of the penumbra—a computer simulated study. Med Phys 23:1407–1411

    Article  PubMed  CAS  Google Scholar 

  23. Cheng C-W, Cho SH, Taylor M, Das IJ (2007) Determination of zero-field size percent depth doses and tissue maximum ratios for stereotactic radiosurgery and IMRT dosimetry: comparison between experimental measurements and Monte Carlo simulation. Med Phys 8:3149–3517

    Article  Google Scholar 

  24. Laub WU, Kaulich TW, Nusslin F (1999) A diamond detector in the dosimetry of high-energy electron and photon beams. Phys Med Biol 44:2183–2192

    Article  PubMed  CAS  Google Scholar 

  25. Martens C, Wagter CD, Neve WD (2000) The value of the PinPoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy. Phys Med Biol 45:2519

    Article  PubMed  CAS  Google Scholar 

  26. PTW-Frieburg (2008) Ionisation Radiation Detector Catalogue (available online)

  27. Bucciolini M, Buonamici FB, Mazzocchi S, Angelis CD, Onori S, Cirrone GAP (2003) Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size. Med Phys 30:2149

    Article  PubMed  CAS  Google Scholar 

  28. Van-Dyk J (1999) The modern technology of radiation oncology. Medical Physics Publishing, Madison

    Google Scholar 

  29. Varian. Millennium MLC (2010) http://www.varian.com/us/oncology/radiation_oncology/trilogy/millennium_mlc.html

  30. Lips IM, Dehnad H, Gils CHv, Kurger AEB, Heide UAvd, Vulpen Mv (2008) High-dose intensity-modulated radiotherapy for prostate cancer using daily fiducial marker-based position verification: acute and late toxicity in 331 patients. Radiat Oncol 3:15

    Article  PubMed  Google Scholar 

  31. Hansen EK, Roach M (2007) Handbook of evidence-based radiation oncology. Springer, New York

    Google Scholar 

  32. Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment for radiotherapy research. Med Phys 30:979–985

    Article  PubMed  Google Scholar 

  33. Cancer_Institute_NSW (2010) Radiation oncology treatment protocol (02-1184.1), prostate, high risk, EBRT. https://www.treatment.cancerinstitute.org.au/cancerinstitute/cancerinstituteDADAServlet?sid=2581486CIS&ent=1ES100&page=2BENPC&cit_key=3535CIS&ctt_key=21ES100

  34. Williams MJ, Metcalfe P (2006) Verification of a rounded leaf-end MLC model used in a radiotherapy treatment planning system. Phys Med Biol 51:N65–N78

    Article  PubMed  CAS  Google Scholar 

  35. Ezzell GA, Burmeister JW, Dogan N et al (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36:5359

    Article  PubMed  Google Scholar 

  36. Childress NL, Bloch C, White RA, Salehpour M, Rosen II (2005) Detection of IMRT delivery errors using a quantitative 2D dosimetric verification system. Med Phys 32:153

    Article  PubMed  Google Scholar 

  37. Van Esch A, Bohsung Jr, Sorvari P et al (2002) Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments. Radiother Oncol 65:53–70

  38. Laub WU (2002) Comparison of TG-43 dose calculations to pinpoint ion chamber and diamond detector measurements. Phys Med Biol 47:N315–N318

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Robin Hill for the loan of the diamond detector from the Royal Prince Alfred Hospital, Camperdown. The authors would like to thank Australian Rotary Health and the NSW Cancer Institute Clinical Leaders program for funding assistance for NH and PM respectively. Research by the third author was undertaken, in part, thanks to funding from the Cancer Institute of NSW, Radiation Therapy Academic Leaders program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnson Yuen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, J., Hardcastle, N. & Metcalfe, P. A study into the relationship between the measured penumbra and effective source size in the modeling of the Pinnacle RTPS. Australas Phys Eng Sci Med 34, 233–241 (2011). https://doi.org/10.1007/s13246-011-0070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-011-0070-8

Keywords

Navigation