Skip to main content

Advertisement

Log in

The Effects That Cardiac Motion has on Coronary Hemodynamics and Catheter Trackability Forces for the Treatment of Coronary Artery Disease: An In Vitro Assessment

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The coronary arterial tree experiences large displacements due to the contraction and expansion of the cardiac muscle and may influence coronary haemodynamics and stent placement. The accurate measurement of catheter trackability forces within physiological relevant test systems is required for optimum catheter design. The effects of cardiac motion on coronary flowrates, pressure drops, and stent delivery has not been previously experimentally assessed. A cardiac simulator was designed and manufactured which replicates physiological coronary flowrates and cardiac motion within a patient-specific geometry. A motorized delivery system delivered a commercially available coronary stent system and monitored the trackability forces along three phantom patient-specific thin walled compliant coronary vessels supported by a dynamic cardiac phantom model. Pressure drop variation is more sensitive to cardiac motion than outlet flowrates. Maximum pressure drops varied from 7 to 49 mmHg for a stenosis % area reduction of 56 to 90%. There was a strong positive linear correlation of cumulative trackability force with the cumulative curvature. The maximum trackability forces and curvature ranged from 0.24 to 0.87 N and 0.06 to 0.22 mm−1 respectively for all three vessels. There were maximum and average percentage differences in trackability forces of (23–49%) and (1.9–5.2%) respectively when comparing a static pressure case with the inclusion of pulsatile flow and cardiac motion. Cardiac motion with pulsatile flow significantly altered (p value <0.001) the trackability forces along the delivery pathways with high local percentage variations and pressure drop measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Alfonso, F., C. Macaya, J. Goicolea, R. Hernandez, J. Segovia, J. Zamorano, et al. Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J. Am. Coll. Cardiol. 23(4):879–884, 1994.

    Article  Google Scholar 

  2. Balcon, R. Recommendations on stent manufacture, implantation and utilisation. Eur. Heart J. 18(10):1536–1547, 1997.

    Article  Google Scholar 

  3. Bogaert, J., and F. E. Rademakers. Regional nonuniformity of normal adult human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 280:H610–H620, 2001.

    Google Scholar 

  4. Caldwell, R. A., J. E. Woodell, S. P. Ho, S. W. Shalaby, T. Boland, E. M. Langan, et al. In vitro evaluation of phosphonylated low-density polyethylene for vascular applications. J. Biomed. Mater. Res. 62(4):514–524, 2002.

    Article  Google Scholar 

  5. Capron, L., and P. Bruneval. Influence of applied stress on mitotic response of arteries to injury with a balloon catheter: quantitative study in rat thoracic aorta. Cardiovasc. Res. 23(11):941–948, 1989.

    Article  Google Scholar 

  6. Chen, S. Y., and J. D. Carroll. Kinematic and deformation analysis of 4-D coronary arterial trees reconstructed from cine angiograms. IEEE Trans. Med. Imaging 21(6):710–721, 2003.

    Article  Google Scholar 

  7. Davies, J. E., Z. I. Whinnett, D. P. Francis, C. H. Manisty, J. Aguado-Sierra, et al. Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans attenuated in left ventricular hypertrophy. Circulation 113:1768–1778, 2006.

    Article  Google Scholar 

  8. Dunn, A. C., and T. D. Zaveri. Macroscopic friction coefficient measurements on living endothelial cells. Tribol. Lett. 27(2):233–238, 2007.

    Article  Google Scholar 

  9. Ene, F., P. Delassus, and L. Morris. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics. Proc. Inst. Mech. Eng. H 228(8):768–780, 2014.

    Article  Google Scholar 

  10. Ethier, C. R., and A. C. Simmons. Introduction to Biomechanics. From Cells to Organisms. New York: Cambridge University Press, 2007.

    Book  Google Scholar 

  11. Fedel, M., F. Tessarolo, P. Ferrari, C. Lösche, N. Ghassemieh, G. M. Guarrera, et al. Functional properties and performance of new and reprocessed coronary angioplasty balloon catheters. J. Biomed. Mater. Res. 78B(2):364–372, 2006.

    Article  Google Scholar 

  12. Gielen, H., O. Daniels, and H. van Lier. Natural history of congenital pulmonary valvar stenosis: an echo and Doppler cardiographic study. Cardiol. Young 1999(9):129–135, 1999.

    Google Scholar 

  13. Johnston, K., P. Sharma, and J. Oshinski. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0T. J. Biomech. 41:508–602, 2008.

    Article  Google Scholar 

  14. Kamangar, S., G. Kalimuthu, I. A. Badruddin, A. Badarudin, N. J. Ahmed, and T. M. Khan. Numerical investigation of the effects of stenosis geometry on the coronary diagnostic parameters. Sci. World J. 2014:354946, 2014.

    Article  Google Scholar 

  15. Kinney, T. B., M. Fan, A. K. Chin, J. C. Finn, W. G. Hayden, and T. J. Fogarty. Shear force in angioplasty. Am. J. Roentgenol. 144(1):115–122, 1985.

    Article  Google Scholar 

  16. Kolandavel, M. K., E. T. Fruend, S. Ringgaard, and P. G. Walker. The effects of time varying curvature on species transport in coronary arteries. Ann. Biomed. Eng. 34(12):1820–1832, 2006.

    Article  Google Scholar 

  17. Kousera, C. A., S. Nijjer, R. Torii, R. Petraco, S. Sen, N. Foin, A. D. Hughes, D. P. P. Francis, X. J. Xu, and J. E. Davies. Patient-specific coronary stenoses can be modelled using a combination of OCT and flow velocities to accurately predict hyperemic pressure gradients. IEEE Trans. Biomed. Eng. 61:1902–1913, 2014.

    Article  Google Scholar 

  18. Lee, R. T., A. J. Grodzinsky, E. H. Frank, R. D. Kamm, and F. J. Schoen. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770, 1991.

    Article  Google Scholar 

  19. Leung, J. H., A. R. Wright, N. Cheshire, et al. Fluid structure interaction of patient specific abdominal aorta aneurysms: a comparison with solid stress models. BioMed. Eng. OnLine 5:33, 2006.

    Article  Google Scholar 

  20. Malve, M., A. Garcia, J. Ohayon, and M. A. Martinez. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation FSI vs CFD. Int. Commun. Heat Mass Transf. 39:745–751, 2012.

    Article  Google Scholar 

  21. Mamada, K., H. Kosukegawa, V. Fridrici, P. Kapsa, and M. Ohta. Friction properties of PVA-H/steel ball contact under water lubrication conditions. Tribol. Int. 44(7):757–763, 2011.

    Article  Google Scholar 

  22. McDaniel, M. C., E. M. Galbraith, A. M. Jeroudi, O. R. Kashlan, P. Eshtehardi, et al. Localization of culprit lesions in coronary arteries of patients with ST-segment elevation myocardial infarctions: relation to bifurcations and curvatures. Am. Heart J. 161:508–515, 2011.

    Article  Google Scholar 

  23. Meng, S., H. Stefan, H. Geyer, F. da Luciano, M. P. Viana, and W. J. Weninger. Objective characterization of the course of the parasellar internal carotid artery using mathematical tools. Surg. Radiol. Anat. 30(6):519–526, 2008.

    Article  Google Scholar 

  24. Morris, L., P. Delassus, A. Callanan, M. Walsh, F. Wallis, P. Grace, and T. McGloughlin. 3-D numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 127(5):767–775, 2005.

    Article  Google Scholar 

  25. Nichols, W. W., and M. F. Rourke. McDonald’s Blood Flow in Arteries (5th ed.). Boca Raton: Taylor & Francis, 2005.

    Google Scholar 

  26. O’Flynn, P., G. O’Sullivan, and A. Pandit. Methods for three-dimensional geometric characterization of the arterial vasculature. Ann. Biomed. Eng. 35(8):1368–1381, 2007.

    Article  Google Scholar 

  27. O’Flynn, P., G. O’Sullivan, and A. Pandit. Geometric variability of the abdominal aorta and its major peripheral branches. Ann. Biomed. Eng. 38(3):824–840, 2010.

    Article  Google Scholar 

  28. Pao, Y. C., J. T. Lu, and E. L. Ritman. Bending and twisting of an in vivo coronary artery at a bifurcation. J. Biomech. 25(3):287–295, 1992.

    Article  Google Scholar 

  29. Papaharilaou, Y., J. A. Ekaterinaris, E. Manousaki, et al. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40:367–377, 2007.

    Article  Google Scholar 

  30. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  Google Scholar 

  31. Pivkin, I. V., P. D. Richardson, D. H. Laidlaw, and G. E. Karniadakis. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model. J. Biomech. 38:1283–1290, 2005.

    Article  Google Scholar 

  32. Prosi, E., K. Perktold, Z. Ding, and M. H. Friedman. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37:1767–1775, 2004.

    Article  Google Scholar 

  33. Rennie, A. C., P. L. Dickrell, and W. G. Sawyer. Friction coefficient of soft contact lenses: measurement and modelling. Tribol. Lett. 18(4):499–504, 2005.

    Article  Google Scholar 

  34. Rieu, R., P. Barragan, V. Garitey, P. O. Roquebert, J. Fuseri, P. Commeau, et al. Assessment of the trackability, flexibility, and conformability of coronary stents: A comparative analysis. Catheter Cardiovasc. Interv. 59(4):496–503, 2003.

    Article  Google Scholar 

  35. Samady, H., P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, L. H. Timmins, A. A. Quyyumi, and D. P. Giddens. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788, 2011.

    Article  Google Scholar 

  36. Schmidt, W., N. Grabow, P. Behrens, and K. P. Schmitz. Trackability, crossability, and pushability of coronary stent systems—an experimental approach. Biomed. Tech. (Berl.) 47(1):124–126, 2002.

    Article  Google Scholar 

  37. Scotti, C. M., and E. A. Finol. Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study. Comput. Struct. 85:1097–1113, 2007.

    Article  Google Scholar 

  38. Scotti, C. M., A. D. Shkolnik, S. C. Muluk, et al. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. BioMed. Eng. OnLine 4:64, 2005.

    Article  Google Scholar 

  39. Shaw, J. A., B. A. Kingwell, A. S. Walton, J. D. Cameron, P. Pillay, C. D. Gatzka, et al. Determinants of coronary artery compliance in subjects with and without angiographic coronary artery disease. J. Am. Coll. Cardiol. 39(10):1637–1643, 2002.

    Article  Google Scholar 

  40. Sinusas, A. J., X. Papademetris, R. T. Constable, D. P. Dione, M. D. Slade, P. Shi, and J. S. Duncan. Quantification of 3-D regional myocardial deformation: shape-based analysis of magnetic resonance images. Am. J. Physiol. Heart Circ. Physiol. 281:H698–H714, 2001.

    Google Scholar 

  41. Steinman, D. A., Y. Hoi, P. Fahy, L. Morris, et al. Variability of CFD solutions for pressure and flow in a giant aneurysm: the SBC2012 CFD challenge. J. Biomech. Eng. 135(2):021016, 2013. doi:10.1115/1.4023382.

    Article  Google Scholar 

  42. Szabadits, P., Z. Puskas, and J. Dobranszky. Flexibility and trackability of laser cut coronary stent systems. Acta Bioeng. Biomech. 11(3):11–18, 2009.

    Google Scholar 

  43. Takashima, K., R. Shimomura, T. Kitou, H. Terada, K. Yoshinaka, and K. Ikeuchi. Contact and friction between catheter and blood vessel. Tribol. Int. 40(2):319–328, 2007.

    Article  Google Scholar 

  44. Vavuranakis, M., I. Stamatopoulos, T. G. Papaioannou, S. Nikolopoulos, K. Toutouzas, and C. Stefanadis. Alterations of pressure waveforms along the coronary arteries and the effect of microcirculatory vasodilation. Int. J. Cardiol. 117:254–259, 2007.

    Article  Google Scholar 

  45. Weydahl, E. S., and J. E. Moore. Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J. Biomech. 34:1189–1196, 2001.

    Article  Google Scholar 

  46. Whittaker, D. R., J. Dwyer, and M. F. Fillinger. Prediction of altered endograft path during endovascular abdominal aortic aneurysm repair with the gore excluder. J. Vasc. Surg. 41(4):575–583, 2005.

    Article  Google Scholar 

  47. Wijesinghe, L. D., D. J. A. Scott, and D. Kessel. Analysis of renal artery geometry may assist in the design of new stents for endovascular aortic aneurysm repair. Br. J. Surg. 84(6):797–799, 1997.

    Article  Google Scholar 

  48. Williams, M. J. A., R. A. H. Stewart, C. J. S. Low, and G. T. Wilkins. Assessment of the mechanical properties of coronary arteries using intravascular ultrasound: an in vivo study. Int. J. Card. Imaging 15(4):287–294, 1999.

    Article  Google Scholar 

  49. Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101(5):1412–1418, 2006.

    Article  Google Scholar 

  50. Yin, C. P. F., Y. R. K. Strumpf, P. H. Chew, and S. L. Zeger. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20(6):577–589, 1987.

    Article  Google Scholar 

  51. Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31:420–429, 2003.

    Article  Google Scholar 

  52. Zhao, S. Z., X. Y. Xu, A. D. Hughes, et al. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984, 2000.

    Article  Google Scholar 

  53. Zheng, S., and Y. Qi. Motion estimation of 3D coronary vessel skeletons from X-ray angiographic sequences. Comput. Med. Imaging Graph. 35(5):353–364, 2011.

    Article  Google Scholar 

  54. Zoarski, G. H., J. M. Mathis, and J. R. Hebel. Performance characteristics of microcatheter systems in a standardized tortuous pathway. Am. J. Neuroradiol. 19(8):1571–1576, 1998.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Strands I and III funding from the Department of Education in Ireland and IRCSET funding from the Irish Research Council.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Studies

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Morris.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, L., Fahy, P., Stefanov, F. et al. The Effects That Cardiac Motion has on Coronary Hemodynamics and Catheter Trackability Forces for the Treatment of Coronary Artery Disease: An In Vitro Assessment. Cardiovasc Eng Tech 6, 430–449 (2015). https://doi.org/10.1007/s13239-015-0241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0241-y

Keywords

Navigation