Skip to main content
Log in

A Stent with Customizable Length for Treatment of Critical Limb Ischemia: Clinical Need, Device Development and Pre-clinical Testing

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Critical limb ischemia (CLI) is typically associated with a poor prognosis in the absence of a revascularization treatment. While surgical revascularization can be successful, there is an increasing desire for minimally invasive therapies, particularly in the more distal, infrapopliteal arteries. These small vessels contribute significantly to CLI, especially in diabetic CLI patients. This study describes a unique multi-segmented self-expanding stent developed specifically for use in infrapopliteal revascularization procedures. The number of segments deployed can be selected to optimize the stented length and location. The device may provide an adjunctive treatment in instances of sub-optimal balloon angioplasty when treating CLI. The clinical opportunity for the device is presented, followed by a description of the design and the design process. The results from a range of bench testing are presented as well as the findings of porcine studies to assess in vivo behaviour. In summary, while further development is needed, this study has demonstrated the feasibility of this novel device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Balar, N. N., R. Dodla, P. Oza, P. N. Patel, and M. Patel. Endovascular versus open revascularization for peripheral arterial disease. Endovasc. Today 8:61–64, 2011.

    Google Scholar 

  2. Barshes, N. R., and M. Belkin. A framework for the evaluation of the “value” and cost-effectiveness in the management of critical limb ischemia. J. Am. Coll. Surg. 213(4):552–566, 2011.

    Article  Google Scholar 

  3. Bernstein, O., and N. Chalmers. New treatments for infrapopliteal disease: devices, techniques, and outcomes so far. Cardiovasc. Interv. Radiol 35:715–724, 2012.

    Article  Google Scholar 

  4. Bosiers, M., K. Deloose, R. Moreialvar, J. Verbist, and P. Peeters. Current status of infrapopliteal stenting in patients with critical limb ischemia. J. Vasc. Bras. 7(3):248–255, 2008.

    Article  Google Scholar 

  5. Bradbury, A. W., C. V. Ruckley, F. G. R. Fowkes, J. F. Forbes, and I. Gillespie. Bypass versus angioplasty in severe ischemia of the leg (BASIL): multicentre, randomized controlled trial. Lancet 366(9501):1925–1934, 2005.

    Article  Google Scholar 

  6. Deloose, K., M. Bosiers, and P. Peeters. One year outcome after primary stenting of infrapopliteal lesions with the Chromis Deep stent in the management of critical limb ischemia. Eurointervention 5(3):318–324, 2009.

    Article  Google Scholar 

  7. Donas, K. P., G. Torsello, A. Schwindt, E. Schoenefeld, O. Boldt, and G. A. Pitoulias. Below knee bare nitinol stent placement in high-risk patients with critical limb ischemia is still durable after 24 months of follow-up. J. Vasc. Surg. 52:356–361, 2010.

    Article  Google Scholar 

  8. Faglia, E., M. Mantero, M. Caminiti, C. Caravaggi, R. De Giglio, C. Pritelli, G. Clerici, P. Fratino, P. De Cata, L. Dalla Paola, G. Mariani, M. Poli, P. G. Settembrini, L. Sciangula, A. Morabito, and L. Graziani. Extensive use of peripheral angioplasty, particularly infrapopliteal, in the treatment of ischaemic diabetic foot ulcers: clinical results of a multicentric study of 221 consecutive diabetic subjects. J. Intern. Med. 252:225–232, 2002.

    Article  Google Scholar 

  9. Falluji, N., and D. Mukherjee. Contemporary management of infrapopliteal peripheral arterial disease. Angiology 62(6):490–499, 2011.

    Article  Google Scholar 

  10. Frantzen J.J. Segmented Stent for Flexible Stent Delivery System. U.S. Patent No. 6,187,034. 13 Feb 2001.

  11. Gates, J., and G. G. Hartnell. Optimized diagnostic angiography in high-risk patients with severe peripheral vascular disease. RadioGraphics 20:121–133, 2000.

    Article  Google Scholar 

  12. Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41(6):1206–1212, 2008.

    Article  Google Scholar 

  13. Graziani, L., A. Silvestro, V. Bertone, E. Manara, R. Andreini, A. Sigala, R. Mingardi, and R. De Giglio. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur. J. Vasc. Endovasc. Surg. 33:453–460, 2007.

    Article  Google Scholar 

  14. Hirsch, A. T., et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation 113:e463–e654, 2006.

    Article  Google Scholar 

  15. Hsiao, H. M., S. Prabhu, A. Nikanorov, and M. Razavi. Renal artery stent bending fatigue analysis. J. Med. Dev. Trans. ASME 1(2):113–118, 2007.

    Article  Google Scholar 

  16. Im, S., S.-W. Rha, B. G. Choi, S. E. Choi, Y. Park, A. R. Goud, et al. Comparison of 12-month clinical outcomes of infrapopliteal balloon angioplasty alone versus balloon angioplasty with provisional stenting in patients with critical limb ischemia. J. Am. Coll. Cardiol. 63:S32–S32, 2014.

    Article  Google Scholar 

  17. Karnabatidis, D., K. Katsanos, S. Spiliopoulos, A. Diamantopoulos, G. C. Kagadis, and D. Siablis. Incidence, anatomical location, and clinical significance of compressions and fractures in infrapopliteal balloon-expandable metal stents. J. Endovasc. Ther. 16:15–22, 2009.

    Article  Google Scholar 

  18. Kasiri, S., and D. J. Kelly. An argument for the use of multiple segment stents in curved arteries. J. Biomech. Eng. 133(8):084501, 2011.

    Article  Google Scholar 

  19. Krol, K. L. Coding for lower extremity vascularization in 2011. Endovasc. Today 5:81–89, 2011.

    Google Scholar 

  20. Liistro, F., I. Porto, P. Angioli, S. Grotti, L. Ricci, K. Ducci, G. Falsini, G. Ventoruzzo, F. Turini, G. Bellandi, and L. Bolognese. Drug-eluting balloon in peripheral intervention for below the knee angioplasty evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation 128(6):615–621, 2013.

    Article  Google Scholar 

  21. Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27(9):1988–2000, 2006.

    Article  Google Scholar 

  22. Neville, R. F., J. Steinberg, J. Babrowicz, J. Laredo, D. Deaton, and C. E. Attinger. A comparison of endovascular revascularization and bypass in regards to healing rayes of ischemic wounds. J. Vasc. Surg. 51(6):11s–12s, 2010.

    Article  Google Scholar 

  23. Ní Ghriallais, R., and M. Bruzzi. Self-expanding stent modelling and radial force accuracy. Comput. Methods Biomech. Biomed. Eng. 17(4):318–333, 2014.

    Article  Google Scholar 

  24. Norgren, L., W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris, and F. G. R. Fowkes. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur. J. Vasc. Endovasc. Surg. 33:S1–S75, 2007.

    Article  Google Scholar 

  25. Paley D. Principles of Deformity Correction. Berlin: Springer, 2002. ISBN 3-540-41665-X. p 287.

  26. Rastogi, S., and S. W. Stavropoulos. Infrapopliteal angioplasty. Tech. Vasc. Interv. Radiol. 7(1):33–39, 2004.

    Article  Google Scholar 

  27. Rocha-Singh, K. J., M. Jaff, J. Joyce, J. Laird, G. Ansel, and P. Schneider. Major adverse limb events and wound healing following infrapopliteal artery stent implantation in patients with critical limb ischemia: the XCELL trial. Catheter. Cardiovasc. Interv. 80(6):1042–1051, 2012.

    Article  Google Scholar 

  28. Ryu, H. M., J. S. Kim, Y. G. Ko, M. K. Hong, Y. Jang, and D. Choi. Clinical outcomes of infrapopliteal angiography in patients with critical limb ischemia. Korean Circ. J. 42:259–265, 2012.

    Article  Google Scholar 

  29. Saguner, A. M., T. Traupe, L. Raeber, N. Hess, Y. Banz, A. R. Saguner, N. Diehm, and O. M. Hess. Oversizing and restenosis with self-expanding stents in iliofemoral arteries. Cardiovasc. Interv. Radiol. 35:906–913, 2012.

    Article  Google Scholar 

  30. Schmidt, A., M. Piorkowski, M. Werner, M. Ulrich, Y. Bausback, S. Braunlich, H. Ick, J. Schuster, S. Botsios, H. J. Kruse, R. L. Varcoe, and D. Scheinert. First experience with drug-eluting balloons in infrapopliteal arteries: restenosis rate and clinical outcome. J. Am. Coll. Cardiol. 58:1105–1109, 2011.

    Article  Google Scholar 

  31. Selvarasu, N. K. C., D. K. Tafti, and P. P. Vlachos. Hydrodynamic effects of compliance mismatch in stented arteries. J. Biomech. Eng. 133(2):021008, 2011.

    Article  Google Scholar 

  32. Siablis, D., D. Karnabatidis, K. Katsanos, A. Diamantopoulos, S. Spiliopoulos, G. C. Kagadis, and J. Tsolakis. Infrapopliteal application of sirolimus-eluting versus bare metal stents for critical limb ischemia: analysis of long-term angiographic and clinical outcome. J. Vasc. Interv. Radiol. 20:1141–1150, 2009.

    Article  Google Scholar 

  33. Singh, K. P., and A. M. Sharma. Critical limb ischemia: current approach and future directions. J. Cardiovasc. Trans. Res. 7:437–445, 2014.

    Article  Google Scholar 

  34. Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.

    Article  Google Scholar 

  35. Yang, X., X. Lu, K. Ye, X. Li, J. Qin, and M. Jiang. Systematic review and meta-analysis of balloon angioplasty versus primary stenting in the infrapopliteal disease. Vasc. Endovasc. Surg. 48:18–26, 2014.

    Article  Google Scholar 

  36. Zahedmanesh, H., and C. Lally. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med. Biol. Eng. Comput. 47(4):385–393, 2009.

    Article  Google Scholar 

  37. Zhao, H. Q., A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L. B. Schwartz. Late stent expansion and neointimal proliferation of oversized nitinol stents in peripheral arteries. Cardiovasc. Interv. Radiol. 32:720–726, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the design and development activities of Mr. Brendan Casey and Mr. Ronan Keating. This work has been co-funded by Enterprise Ireland and the European Regional Development Fund (ERDF) through Proof of Concept grant PC-2008-012 and Technology Development grant CFTD-09-0139.

Conflict of interest

Barry O’Brien, Eoin O’Cearbhaill and Mark Bruzzi declare that they have no conflict of interest.

Human Studies

No human studies were carried out by the authors for this article.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry O’Brien.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 20778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, B., O’Cearbhaill, E. & Bruzzi, M. A Stent with Customizable Length for Treatment of Critical Limb Ischemia: Clinical Need, Device Development and Pre-clinical Testing. Cardiovasc Eng Tech 5, 317–333 (2014). https://doi.org/10.1007/s13239-014-0192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0192-8

Keywords

Navigation