Skip to main content

Advertisement

Log in

Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement. Restenosis and progression of native arterial disease often lead to recurrence of symptoms and reinterventions that increase morbidity and health care expenditures. One of the main factors thought to be associated with stent failure in the femoropopliteal artery (FPA) is the unique and highly dynamic mechanical environment of the lower limb. Clinical and experimental data demonstrate that the FPA undergoes significant deformations with limb flexion. It is hypothesized that the inability of many existing stent designs to conform to these deformations likely plays a role in reconstruction failure, as repetitive movements of the leg and thigh combine with mechanical mismatch between the artery and the stent and result in mechanical damage to both the artery and the stent. In this review we will identify challenges and provide a mechanical perspective of FPA stenting, and then discuss current research directions with promise to provide a better understanding of Nitinol, specific features of stent design, and improved characterization of the biomechanical environment of the FPA to facilitate development of better stents for patients with PAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adam, D. J., J. D. Beard, T. Cleveland, J. Bell, A. W. Bradbury, J. F. Forbes, F. G. R. Fowkes, I. Gillepsie, C. V. Ruckley, G. Raab, and H. Storkey. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366:1925–1934, 2005.

    Article  CAS  PubMed  Google Scholar 

  2. Adlakha, S., M. Sheikh, J. Wu, M. W. Burket, U. Pandya, W. Colyer, E. Eltahawy, and C. J. Cooper. Stent fracture in the coronary and peripheral arteries. J. Interv. Cardiol. 23:411–419, 2010.

    Article  PubMed  Google Scholar 

  3. Analysis, A. E. Stenting for peripheral artery disease of the lower extremities: an evidence-based analysis. Ont. Health Technol. Asses. Ser. 10:1–88, 2010.

    Google Scholar 

  4. Ansari, F., L. K. Pack, S. S. Brooks, and T. M. Morrison. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J. Vasc. Surg. 58:804–813, 2013.

    Article  PubMed  Google Scholar 

  5. Association, American Diabetes, and A. D. Association. Peripheral arterial disease in people with diabetes. Diabetes Care 26:3333–3341, 2003.

    Article  Google Scholar 

  6. ASTM. Standard test methods for in vitro pulsatile durability testing of vascular stents 1. Current 2011. https://doi.org/10.1520/f2477-07.proper.

    Google Scholar 

  7. Auricchio, F., and R. L. Taylor. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 143:175–194, 1997.

    Article  Google Scholar 

  8. Auricchio, F., R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146:281–312, 1997.

    Article  Google Scholar 

  9. Barras, C. D. J., and K. A. Myers. Nitinol: its use in vascular surgery and other applications. EJVES Extra 19:564–569, 2010.

    Google Scholar 

  10. Bartholomew, J., and J. Olin. Pathophysiology of peripheral arterial disease and risk factors for its development. Cleve. Clin. J. Med. 73:8–14, 2006.

    Article  Google Scholar 

  11. Bosiers, M. M. The Zilver® PTX® single arm study: 12-month results from the TASC C/D lesion subgroup. J. Cardiovasc. Surg. (Torino) 54:115–122, 2013.

    CAS  Google Scholar 

  12. Boyd, J. G., and D. C. Lagoudas. A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12:805–842, 1996.

    Article  CAS  Google Scholar 

  13. Brinson, L. C., and R. Lammering. Finite element analysis of the behavior of shape memory alloys and their applications. Int. J. Solids Struct. 30:3261–3280, 1993.

    Article  Google Scholar 

  14. Buehler, W., J. Gilfrich, and R. Wiley. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34:1475–1477, 1963.

    Article  CAS  Google Scholar 

  15. Chang, C.-H., J.-W. Lin, J. Hsu, L.-C. Wu, and M.-S. Lai. Stent revascularization versus bypass surgery for peripheral artery disease in type 2 diabetic patients: an instrumental variable analysis. Sci. Rep. 6:37177, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng, C. P., G. Choi, R. J. Herfkens, and C. A. Taylor. The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: potential clinical implications. J. Vasc. Interv. Radiol. 21:195–202, 2010.

    Article  PubMed  Google Scholar 

  17. Cheng, C., N. Wilson, and R. Hallett. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol 17:979–987, 2006.

    Article  PubMed  Google Scholar 

  18. Cimminiello, C. PAD: epidemiology and pathophysiology. Thromb. Res. 106:V295–V301, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Cisse, C., W. Zaki, and T. Ben Zineb. A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 76:244–284, 2016.

    Article  CAS  Google Scholar 

  20. Comstock, R. J., T. E. Buchheit, M. Somerday, and J. A. Wert. Modeling the transformation stress of constrained shape memory alloy single crystals. Acta Mater. 44:3505–3514, 1996.

    Article  CAS  Google Scholar 

  21. Conte, M. S., D. F. Bandyk, A. W. Clowes, G. L. Moneta, L. Seely, T. J. Lorenz, H. Namini, A. D. Hamdan, S. P. Roddy, M. Belkin, S. A. Berceli, R. J. DeMasi, R. H. Samson, and S. S. Berman. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg. 43:742–751, 2006.

    Article  PubMed  Google Scholar 

  22. Conti, M., M. Marconi, G. Campanile, A. Reali, D. Adami, R. Berchiolli, and F. Auricchio. Patient-specific finite element analysis of popliteal stenting. Meccanica 2016. https://doi.org/10.1007/s11012-016-0452-9.

    Google Scholar 

  23. Cragg, A., G. Lund, J. Rysavy, F. Castaneda, W. Castaneda-Zuniga, and K. Amplatz. Nonsurgical placement of arterial endoprostheses: a new technique using nitinol wire. Radiology 147:261–263, 1983.

    Article  CAS  PubMed  Google Scholar 

  24. Dake, M. D. M. D. Nitinol stents with polymer-free paclitaxel coating for lesions in the superficial femoral and popliteal arteries above the knee: twelve-month safety and effectiveness results from the Zilver PTX single-arm clinical study. J. Endovasc. Ther. 18:613–623, 2011.

    Article  PubMed  Google Scholar 

  25. Dake, M. D., G. M. Ansel, M. R. Jaff, T. Ohki, R. R. Saxon, H. B. Smouse, T. Zeller, G. S. Roubin, M. W. Burket, Y. Khatib, S. A. Snyder, A. O. Ragheb, J. K. White, and L. S. Machan. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month zilver PTX randomized study results. Circ. Cardiovasc. Interv. 4:495–504, 2011.

    Article  CAS  PubMed  Google Scholar 

  26. Darling, J. D. J. D. Results for primary bypass versus primary angioplasty/stent for lower extremity chronic limb-threatening ischemia. J. Vasc. Surg. 66:466–475, 2017.

    Article  PubMed  Google Scholar 

  27. Deas, D. S. J., A. P. Marshall, A. Bian, A. Shintani, and R. J. Guzman. Association of cardiovascular and biochemical risk factors with tibial artery calcification. Vasc. Med. 20:326–331, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Desyatova, A., J. MacTaggart, and A. Kamenskiy. Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. Acta Biomater. 64:50–58, 2017.

    Article  PubMed  Google Scholar 

  29. Desyatova, A., J. MacTaggart, R. Romarowski, W. Poulson, M. Conti, and A. Kamenskiy. Effect of aging on mechanical stresses, deformations, and hemodynamics in human femoropopliteal artery due to limb flexion. Biomech. Model. Mechanobiol. 2017. https://doi.org/10.1007/s10237-017-0953-z.

    Google Scholar 

  30. Desyatova, A., W. Poulson, P. Deegan, C. Lomneth, A. Seas, K. Maleckis, J. MacTaggart, and A. Kamenskiy. Limb flexion-induced twist and associated intramural stresses in the human femoropopliteal artery. J. R. Soc. Interface 14:20170025, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dotter, C., R. Buschmann, K. Montgomery, and J. McKinney. Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology 147:259–260, 1983.

    Article  CAS  PubMed  Google Scholar 

  32. Drexel, M. J., G. S. Selvaduray, and A. R. Pelton. The effects of cold work and heat treatment on the properties of nitinol wire. Proc. Int. Conf. Shape Mem. Superelastic Technol., 2006.

  33. Duda, S. H., J. Wiskirchen, G. Tepe, M. Bitzer, T. W. Kaulich, D. Stoeckel, and C. D. Claussen. Physical properties of endovascular stents: an experimental comparison. J. Vasc. Interv. Radiol. 11:645–654, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Duerig, T. W., and K. Bhattacharya. The influence of the R-phase on the superelastic behavior of NiTi. Shape Mem. Superelasticity 1:153–161, 2015.

    Article  Google Scholar 

  35. Duerig, T., A. Pelton, and D. Stöckel. An overview of nitinol medical applications. Mater. Sci. Eng. A 273:149–160, 1999.

    Article  Google Scholar 

  36. Duerig, T. W., D. E. Tolomeo, and M. Wholey. An overview of superelastic stent design. Minim. Invasive Ther. Allied Technol. 9:235–246, 2000.

    Article  CAS  PubMed  Google Scholar 

  37. Dyet, J. F., W. G. Watts, D. F. Ettles, and A. A. Nicholson. Mechanical properties of metallic stents: how do these properties influence the choice of stent for specific lesions. Cardiovasc. Interv. Radiol. 23:47–54, 2000.

    Article  CAS  Google Scholar 

  38. Elahinia, M. H., M. Hashemi, M. Tabesh, and S. B. Bhaduri. Manufacturing and processing of NiTi implants: a review. Prog. Mater. Sci. 57:911–946, 2012.

    Article  CAS  Google Scholar 

  39. Favier, D., Y. Liu, L. Orgéas, A. Sandel, L. Debove, and P. Comte-Gaz. Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy. Mater. Sci. Eng. A 429:130–136, 2006.

    Article  CAS  Google Scholar 

  40. FDA. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2010.

  41. Frick, C. P., A. M. Ortega, J. Tyber, A. E. M. Maksound, H. J. Maier, Y. Liu, and K. Gall. Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng. A 405:34–49, 2005.

    Article  CAS  Google Scholar 

  42. Gabrielli, R., M. S. Rosati, R. Chiappa, M. Millarelli, L. Marcuccio, A. Siani, and G. Caselli. First clinical experience with the innova versus the protege everflex self-expanding bare metal stents in superficial femoral artery occlusions. Thorac. Cardiovasc. Surg. 63:158–163, 2015.

    Article  PubMed  Google Scholar 

  43. Ganguly, A., J. Simons, A. Schneider, B. Keck, N. R. Bennett, R. J. Herfkens, S. M. Coogan, and R. Fahrig. In-vivo imaging of femoral artery nitinol stents for deformation analysis. J. Vasc. Interv. Radiol. 22:244–249, 2011.

    Article  PubMed  Google Scholar 

  44. Garcia, L., M. R. Jaff, C. Metzger, G. Sedillo, A. Pershad, F. Zidar, R. Patlola, R. G. Wilkins, A. Espinoza, A. Iskander, G. S. Khammar, Y. Khatib, R. Beasley, S. Makam, R. Kovach, S. Kamat, L. R. J. Leon, W. B. Eaves, J. J. Popma, L. Mauri, D. Donohoe, C. C. Base, and K. Rosenfield. Wire-interwoven nitinol stent outcome in the superficial femoral and proximal popliteal arteries: twelve-month results of the SUPERB trial. Circ. Cardiovasc. Interv. 8:1–8, 2015.

    Article  CAS  Google Scholar 

  45. Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316:1371–1375, 1987.

    Article  CAS  PubMed  Google Scholar 

  46. Gökgöl, C., S. Schumann, N. Diehm, G. Zheng, and P. Büchler. In vivo quantification of the deformations of the femoropopliteal segment. J. Endovasc. Ther. 24:27–34, 2017.

    Article  PubMed  Google Scholar 

  47. Gong, X., A. Pelton, and T. Duerig. Finite element analysis and experimental evaluation of superelastic Nitinol stent. Proc. International Conference on Shape Memory and Superelastic Superelastic, 2004.

  48. Goodney, P. P., A. W. Beck, J. Nagle, H. G. Welch, and R. M. Zwolak. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J. Vasc. Surg. 50:54–60, 2009.

    Article  PubMed  Google Scholar 

  49. Gray, W. A., A. Feiring, M. Cioppi, R. Hibbard, B. Gray, Y. Khatib, D. Jessup, W. Bachinsky, E. Rivera, J. Tauth, R. Patarca, J. Massaro, H.-P. Stoll, and M. R. Jaff. S.M.A.R.T. Self-expanding nitinol stent for the treatment of atherosclerotic lesions in the superficial femoral artery (STROLL): 1-year outcomes. J. Vasc. Interv. Radiol. 26:21–28, 2015.

    Article  PubMed  Google Scholar 

  50. Guzman, R. J. Clinical, cellular, and molecular aspects of arterial calcification. J. Vasc. Surg. 45:57–63, 2007.

    Article  Google Scholar 

  51. Ho, C. Y., and C. M. Shanahan. Medial arterial calcification: an overlooked player in peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 36:1475–1482, 2016.

    Article  CAS  PubMed  Google Scholar 

  52. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.

    Article  CAS  PubMed  Google Scholar 

  53. Humphrey, J. D., J. F. Eberth, W. W. Dye, and R. L. Gleason. Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42:1–8, 2009.

    Article  CAS  PubMed  Google Scholar 

  54. Irwin, C. L., and R. J. Guzman. Matrix metalloproteinases in medial arterial calcification: potential mechanisms and actions. Vascular 17(Suppl 1):S40–S44, 2009.

    Article  PubMed  Google Scholar 

  55. Kamenskiy, A. V., I. I. Pipinos, Y. A. Dzenis, C. S. Lomneth, S. A. J. Kazmi, N. Y. Phillips, and J. N. MacTaggart. Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Acta Biomater. 10:1301–1313, 2014.

    Article  PubMed  Google Scholar 

  56. Kamenskiy, A. V., I. I. Pipinos, Y. A. Dzenis, N. Y. Phillips, A. S. Desyatova, J. Kitson, R. Bowen, and J. N. MacTaggart. Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater. 11:304–313, 2015.

    Article  PubMed  Google Scholar 

  57. Kamenskiy, A., W. Poulson, S. Sim, A. Reilly, J. Luo, and J. MacTaggart. Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Atheroscler. Thromb. Vasc. Biol. 2018. https://doi.org/10.1161/ATVBAHA.117.310490.

    Google Scholar 

  58. Kamenskiy, A., A. Seas, G. Bowen, P. Deegan, A. Desyatova, N. Bohlim, W. Poulson, and J. Mactaggart. In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater. 32:231–237, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kamenskiy, A., A. Seas, P. Deegan, W. Poulson, E. Anttila, S. Sim, A. Desyatova, and J. MacTaggart. Constitutive description of human femoropopliteal artery aging. Biomech. Model. Mechanobiol. 16:681–692, 2017.

    Article  PubMed  Google Scholar 

  60. Kauffman, G. B., and I. Mayo. The story of nitinol: the serendipitous discovery of the memory metal and its applications. Chem. Educ. 2(2):1–21, 1997.

    Article  Google Scholar 

  61. Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370–2378, 2008.

    Article  CAS  PubMed  Google Scholar 

  62. Kneissl, A. C., E. Unterweger, M. Bruncko, G. Lojen, K. Mehrabi, and H. Scherngell. Microstructure and properties of NiTi and CuAlNi shape memory alloys. Metalurgija 14:89–100, 2008.

    CAS  Google Scholar 

  63. Krankenberg, H., M. Schlüter, H. J. Steinkamp, K. Bürgelin, D. Scheinert, K. L. Schulte, E. Minar, P. Peeters, M. Bosiers, G. Tepe, B. Reimers, F. Mahler, T. Tübler, and T. Zeller. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the Femoral Artery Stenting Trial (FAST). Circulation 116:285–292, 2007.

    Article  CAS  PubMed  Google Scholar 

  64. Kurayev, A., S. Zavlunova, and A. Babaev. CRT-207 role of nitinol stent fractures in the development of in-stent restenosis in the superficial femoral artery. JACC Cardiovasc. Interv. 7:S35, 2014.

    Article  Google Scholar 

  65. Laird, J. R., A. Jain, T. Zeller, R. Feldman, D. Scheinert, J. J. Popma, E. J. Armstrong, and M. R. Jaff. Nitinol stent implantation in the superficial femoral artery and proximal popliteal artery: twelve-month results from the complete SE multicenter trial. J. Endovasc. Ther. 21:202–212, 2014.

    Article  PubMed  Google Scholar 

  66. Laird, J. R., B. T. Katzen, D. Scheinert, J. Lammer, J. Carpenter, M. Buchbinder, R. Dave, G. Ansel, A. Lansky, E. Cristea, T. J. Collins, J. Goldstein, A. Y. Cao, and M. R. Jaff. Nitinol stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: three-year follow-up from the RESILIENT randomized trial. J. Endovasc. Ther. 19:1–9, 2012.

    Article  PubMed  Google Scholar 

  67. Laird, J. R., and K. K. Yeo. The treatment of femoropopliteal in-stent restenosis back to the future. J. Am. Coll. Cardiol. 2012. https://doi.org/10.1016/j.jacc.2011.09.037.

    PubMed  Google Scholar 

  68. Lammer, J., T. Zeller, K. A. Hausegger, P. J. Schaefer, M. Gschwendtner, S. Mueller-Huelsbeck, T. Rand, M. Funovics, F. Wolf, A. Rastan, M. Gschwandtner, S. Puchner, R. Ristl, and M. Schoder. Heparin-bonded covered stents versus bare-metal stents for complex femoropopliteal artery lesions: the randomized VIASTAR trial (viabahn endoprosthesis with propaten bioactive surface [VIA] versus bare nitinol stent in the treatment of long lesions in sup. J. Am. Coll. Cardiol. 62:1320–1327, 2013.

    Article  CAS  PubMed  Google Scholar 

  69. Lehto, S., L. Niskanen, M. Suhonen, T. Rönnemaa, and M. Laakso. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 16:978–983, 1996.

    Article  CAS  PubMed  Google Scholar 

  70. Levy, P. J. Epidemiology and pathophysiology of peripheral arterial disease. Clin. Cornerstone 4:1–13, 2002.

    Article  PubMed  Google Scholar 

  71. Liistro, F., S. Grotti, I. Porto, P. Angioli, L. Ricci, K. Ducci, G. Falsini, G. Ventoruzzo, F. Turini, G. Bellandi, and L. Bolognese. Drug-eluting balloon in peripheral intervention for the superficial femoral artery: the DEBATE-SFA randomized trial (Drug Eluting Balloon in Peripheral Intervention for the Superficial Femoral Artery). JACC Cardiovasc. Interv. 6:1295–1302, 2013.

    Article  PubMed  Google Scholar 

  72. Liu, X., Y. Wang, D. Yang, and M. Qi. The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent. Mater. Charact. 59:402–406, 2008.

    Article  CAS  Google Scholar 

  73. MacTaggart, J. J. N., N. N. Y. Phillips, C. C. S. Lomneth, I. I. I. Pipinos, R. Bowen, B. Timothy Baxter, J. Johanning, G. Matthew Longo, A. A. S. Desyatova, M. M. J. Moulton, Y. A. Y. Dzenis, A. A. V. Kamenskiy, B. Baxter, J. Johanning, G. Longo, A. A. S. Desyatova, M. M. J. Moulton, Y. A. Y. Dzenis, and A. A. V. Kamenskiy. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. J. Biomech. 47:2249–2256, 2014.

    Article  PubMed  Google Scholar 

  74. MacTaggart, J., W. Poulson, A. Seas, P. Deegan, C. Lomneth, A. Desyatova, K. Maleckis, and A. Kamenskiy. Stent design affects femoropopliteal artery deformation, 2018.

  75. Mahoney, E. M., K. Wang, H. H. Keo, S. Duval, K. G. Smolderen, D. J. Cohen, G. Steg, D. L. Bhatt, and A. T. Hirsch. Vascular hospitalization rates and costs in patients with peripheral artery disease in the United States. Circ. Cardiovasc. Qual. Outcomes 3:642–651, 2010.

    Article  PubMed  Google Scholar 

  76. Mahtabi, M. J., and N. Shamsaei. Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading. J. Mech. Behav. Biomed. Mater. 55:236–249, 2016.

    Article  CAS  Google Scholar 

  77. Mahtabi, M. J., N. Shamsaei, and M. R. Mitchell. Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J. Mech. Behav. Biomed. Mater. 50:228–254, 2015.

    Article  CAS  PubMed  Google Scholar 

  78. Maleckis, K., P. Deegan, W. Poulson, C. Sievers, A. Desyatova, J. MacTaggart, and A. Kamenskiy. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations. J. Mech. Behav. Biomed. Mater. 75:160–168, 2017.

    Article  PubMed  Google Scholar 

  79. Matsumura, J. S., D. Yamanouchi, J. A. Goldstein, C. W. Pollock, M. Bosiers, G. A. Schultz, D. Scheinert, and K. J. Rocha-Singh. The United States StuDy for EvalUating EndovasculaR TreAtments of Lesions in the Superficial Femoral Artery and Proximal Popliteal By usIng the Protégé EverfLex NitInol STent SYstem II (DURABILITY II). J. Vasc. Surg. 58:73–83.e1, 2013.

    Article  PubMed  Google Scholar 

  80. Mohr, P. J. P. J. Clinical outcomes of endovascular treatment of TASC-II C and D femoropopliteal lesions with the Viabahn endoprosthesis. Cardiovasc. Revascularization Med. 16:465–468, 2015.

    Article  Google Scholar 

  81. Montero-Baker, M. M. Analysis of endovascular therapy for femoropopliteal disease with the Supera stent. J. Vasc. Surg. 64:1002–1008, 2016.

    Article  PubMed  Google Scholar 

  82. Müller-Hülsbeck, S., P. J. Schäfer, N. Charalambous, H. Yagi, M. Heller, and T. Jahnke. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17:767–776, 2010.

    Article  PubMed  Google Scholar 

  83. Mwipatayi, B. P., A. Hockings, M. Hofmann, M. Garbowski, and K. Sieunarine. Balloon angioplasty compared with stenting for treatment of femoropopliteal occlusive disease: a meta-analysis. J. Vasc. Surg. 47:461–469, 2008.

    Article  PubMed  Google Scholar 

  84. Nagl, F., G. Siekmeyer, M. Quellmalz, and A. Schuessler. A comparison of different nitinol material data sources for finite element analysis. J. Mater. Eng. Perform. 20:737–744, 2011.

    Article  CAS  Google Scholar 

  85. Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, F. D. Kolodgie, and R. Virmani. Incidence and predictors of drug-eluting stent fracture in human coronary artery. A pathologic analysis. J. Am. Coll. Cardiol. 54:1924–1931, 2009.

    Article  PubMed  Google Scholar 

  86. Nasser, F., A. Kambara, C. Abath, D. Cavalcanti, I. Barros, N. Pires, M. Rivera, A. Neser, J. Ingrund, M. Burihan, P. Silveira, G. Galego, C. Bortoluzzi, R. Franklin, M. Bosiers, K. Deloose, A. Razuk, R. Caffaro, W. K. Karakhanian, J. Park, C. Lopes, D. Pinto, L. Bez, R. Lopes, A. Mourao, and G. Kleinsorge. Safety and efficacy of the EPIC nitinol vascular stent system for the treatment of lesions located in the superficial femoral artery: prospective and multicentric trial. J. Cardiovasc. Surg. (Torino) 58:409–415, 2015.

    Google Scholar 

  87. Nematzadeh, F., and S. K. Sadrnezhaad. Effects of material properties on mechanical performance of Nitinol stent designed for femoral artery: finite element analysis. Sci. Iran 19:1564–1571, 2012.

    Article  Google Scholar 

  88. Ng, K. L., and Q. P. Sun. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes. Mech. Mater. 38:41–56, 2006.

    Article  Google Scholar 

  89. Ni Ghriallais, R., K. Heraty, B. Smouse, M. Burke, P. Gilson, and M. Bruzzi. Deformation of the femoropopliteal segment: effect of stent length, location, flexibility, and curvature. J. Endovasc. Ther. 23:907–918, 2016.

    Article  PubMed  Google Scholar 

  90. Nikanorov, A., M. Schillinger, H. Zhao, E. Minar, and L. B. Schwartz. Assessment of self-expanding nitinol stent deformation after chronic implantation into the femoropopliteal arteries. EuroIntervention 9:730–737, 2013.

    Article  PubMed  Google Scholar 

  91. Nikanorov, A., H. B. Smouse, K. Osman, M. Bialas, S. Shrivastava, and L. B. Schwartz. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J. Vasc. Surg. 48:435–440, 2008.

    Article  PubMed  Google Scholar 

  92. Nishida, M., C. M. Wayman, and T. Honma. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Trans. A 17:1505–1515, 1986.

    Article  Google Scholar 

  93. Ohki, T., J. F. Angle, H. Yokoi, M. R. Jaff, J. Popma, G. Piegari, and Y. Kanaoka. One-year outcomes of the U.S. and Japanese regulatory trial of the Misago stent for treatment of superficial femoral artery disease (OSPREY study). J. Vasc. Surg. 63:370–376, 2016.

    Article  PubMed  Google Scholar 

  94. Otsuka, K., and X. Ren. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50:511–678, 2005.

    Article  CAS  Google Scholar 

  95. Patoor, E., A. Eberhardt, and M. Berveiller. Micromechanical modelling of superelasticity in shape memory alloys. Shape Mem. Alloy. J. Phys. IV Colloq. 1996. https://doi.org/10.1051/jp4:1996127.

    Google Scholar 

  96. Pelton, A. R. Fatigue and durability of nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2007.

    Article  PubMed  Google Scholar 

  97. Pelton, A., N. Rebelo, T. Duerig, and A. Wick. Experimental and FEM analysis of the bending behaviour of superelastic tubing experimental and FEM analysis of the bending behavior of super elastic tubing. Proc. First Int. Conf. Shape Mem. Superelastic Technol., pp. 353–358, 1994.

  98. Petrini, L., A. Trotta, E. Dordoni, F. Migliavacca, G. Dubini, P. V. Lawford, J. N. Gosai, D. M. Ryan, D. Testi, and G. Pennati. A computational approach for the prediction of fatigue behaviour in peripheral stents: application to a clinical case. Ann. Biomed. Eng. 44:536–547, 2016.

    Article  PubMed  Google Scholar 

  99. Poulson, W., A. Kamenskiy, A. Seas, P. Deegan, C. Lomneth, and J. MacTaggart. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. J. Vasc. Surg. 2017. https://doi.org/10.1016/j.jvs.2017.01.071.

    PubMed  Google Scholar 

  100. Powell, R. J. R. J. Stent placement in the superficial femoral and proximal popliteal arteries with the innova self-expanding bare metal stent system. Catheter. Cardiovasc. Interv. 89:1069–1077, 2017.

    Article  PubMed  Google Scholar 

  101. Price, P. A., S. A. Faus, and M. K. Williamson. Warfarin-induced artery calcification is accelerated by growth and vitamin D. Arterioscler. Thromb. Vasc. Biol. 20:317–327, 2000.

    Article  CAS  PubMed  Google Scholar 

  102. Qi, Y., H. Qi, Y. He, W. Lin, P. Li, L. Qin, Y. Hu, L. Chen, Q. Liu, H. Sun, Q. Liu, G. Zhang, S. Cui, J. Hu, L. Yu, D. Zhang, and J. Ding. Strategy of metal–polymer composite stent to accelerate biodegradation of iron-based biomaterials. ACS Appl. Mater. Interfaces 2017. https://doi.org/10.1021/acsami.7b15206.

    Google Scholar 

  103. Qin, X., M. A. Corriere, L. M. Matrisian, and R. J. Guzman. Matrix metalloproteinase inhibition attenuates aortic calcification. Arterioscler. Thromb. Vasc. Biol. 26:1510–1516, 2006.

    Article  CAS  PubMed  Google Scholar 

  104. Rebelo, N., N. Walker, and H. Foadian. Simulation of implantable nitinol stents, 2001.

  105. Robertson, S. W., X. Y. Gong, and R. O. Ritchie. Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. J. Mater. Sci. 41:621–630, 2006.

    Article  CAS  Google Scholar 

  106. Robertson, S. W., A. R. Pelton, and R. O. Ritchie. Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 57:1–37, 2012.

    Article  CAS  Google Scholar 

  107. Robertson, S. W., R. O. Ritchie, A. Mehta, X. Y. Gong, and A. R. Pelton. Ultrahigh-resolution in situ diffraction characterization of the local mechanics at a growing crack tip in Nitinol. SMST-2006 Proc. Int. Conf. Shape Mem. Superelastic Technol., 2008.

  108. Rocha-Singh, K. J., T. Zeller, and M. R. Jaff. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter. Cardiovasc. Interv. 83:212–220, 2014.

    Article  Google Scholar 

  109. Rundback, J. H., K. C. Herman, and A. Patel. Superficial femoral artery intervention: creating an algorithmic approach for the use of old and novel (endovascular) technologies. Curr. Treat. Options Cardiovasc. Med. 17:400, 2015.

    Article  PubMed  Google Scholar 

  110. Ryhänen, J., and J. Ryhanen. Minimally invasive therapy & allied technologies biocompatibility of nitinol biocompatibility of Nitinol. Minim. Invasive Ther. Allied Technol. 9:99–105, 2000.

    Article  Google Scholar 

  111. Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, G. Biamino, and A. Schmidt. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45:312–315, 2005.

    Article  PubMed  Google Scholar 

  112. Schillinger, M., and E. Minar. Past, present and future of femoropopliteal stenting. J. Endovasc. Ther. 16:147–152, 2009.

    Article  Google Scholar 

  113. Schillinger, M., S. Sabeti, P. Dick, J. Amighi, W. Mlekusch, O. Schlager, C. Loewe, M. Cejna, J. Lammer, and E. Minar. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 115:2745–2749, 2007.

    Article  PubMed  Google Scholar 

  114. Schillinger, M., S. Sabeti, and C. Loewe. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 354:1879–1888, 2006.

    Article  CAS  PubMed  Google Scholar 

  115. Schlager, O., P. Dick, S. Sabeti, J. Amighi, W. Mlekusch, E. Minar, and M. Schillinger. Long-segment SFA stenting-the dark sides: in-stent restenosis, clinical deterioration, and stent fractures. J. Endovasc. Ther. 12:676–684, 2005.

    Article  PubMed  Google Scholar 

  116. Sharma, U., D. Concagh, L. Core, Y. Kuang, C. You, Q. Pham, G. Zugates, R. Busold, S. Webber, J. Merlo, R. Langer, G. M. Whitesides, and M. Palasis. The development of bioresorbable composite polymeric implants with high mechanical strength. Nat. Mater. 17:96, 2017.

    Article  PubMed  CAS  Google Scholar 

  117. Sibé, M., A. Kaladji, C. Boirat, A. Cardon, X. Chaufour, J. P. Bossavy, and B. Saint-Lebes. French multicenter experience with the GORE TIGRIS vascular stent in superficial femoral and popliteal arteries. J. Vasc. Surg. 65:1329–1335, 2017.

    Article  PubMed  Google Scholar 

  118. Sitepu, H. Use of synchrotron diffraction data for describing crystal structure and crystallographic phase analysis of R-phase NiTi shape memory alloy. Textures Microstruct. 35:185–195, 2003.

    Article  CAS  Google Scholar 

  119. Smouse, B. H. B., A. Nikanorov, and D. Laflash. Biomechanical forces in the femoropopliteal arterial segment. Endovasc. Today 4:60–66, 2005.

    Google Scholar 

  120. Stankiewicz, J. M., S. W. Robertson, and R. O. Ritchie. Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents. J. Biomed. Mater. Res. A 81:685–691, 2007.

    Article  CAS  PubMed  Google Scholar 

  121. Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.

    Article  PubMed  Google Scholar 

  122. Stone, P. A. P. A. Early results with LifeStent implantation in RESILIENT and non-RESILIENT inclusion criteria patients. Vascular 23:225–233, 2015.

    Article  PubMed  Google Scholar 

  123. Sullivan, S. J. L., M. L. Dreher, J. Zheng, L. Chen, D. Madamba, K. Miyashiro, C. Trépanier, and S. Nagaraja. Effects of oxide layer composition and radial compression on nickel release in Nitinol stents. Shape Mem. Superelasticity 1:319–327, 2015.

    Article  Google Scholar 

  124. Sun, Q. P., and K. C. Hwang. Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys—I. Derivation of general relations. J. Mech. Phys. Solids 41:1–17, 1993.

    Article  CAS  Google Scholar 

  125. Thériault, P., P. Terriault, V. Brailovski, and R. Gallo. Finite element modeling of a progressively expanding shape memory stent. J. Biomech. 39:2837–2844, 2006.

    Article  PubMed  Google Scholar 

  126. Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Investig. 91:955–967, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Virmani, R., and A. Farb. Pathology of in-stent restenosis. Curr. Opin. Lipidol. 10:499–506, 1999.

    Article  CAS  PubMed  Google Scholar 

  128. W. L. Gore & Associates. I. Mechanical properties of nitinol stents and stent-grafts: comparison of 6 mm diameter devices, 2007.

  129. Watt, J. Origin of femoro-popliteal occlusions. Br. Med. J. 2:1455–1459, 1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Werner, M. M. SUMMIT registry: one-year outcomes after implantation of the EPIC self-expanding nitinol stent in the femoropopliteal segment. J. Endovasc. Ther. 20:759–766, 2013.

    Article  PubMed  Google Scholar 

  131. Werner, M. Factors affecting reduction in SFA stent fracture rates. Endovasc. Today 13:93–95, 2014.

    Google Scholar 

  132. Werner, M., A. Micari, A. Cioppa, G. Vadalà, A. Schmidt, H. Sievert, P. Rubino, A. Angelini, D. Scheinert, and G. Biamino. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superficial femoral artery: the GAIA study. JACC Cardiovasc. Interv. 7:305–312, 2014.

    Article  PubMed  Google Scholar 

  133. Whitcher, F. D. Simulation of in vivo loading conditions of nitinol vascular stent structures. Comput. Struct. 64:1005–1011, 1997.

    Article  Google Scholar 

  134. Yeung, K. W. K., K. M. C. Cheung, W. W. Lu, and C. Y. Chung. Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater. Sci. Eng. A 383:213–218, 2004.

    Article  CAS  Google Scholar 

  135. Zeller, T., N. Saratzis, D. Scheinert, E. Minar, J. P. Beregi, M. Schillinger, H. A. Hausegger, M. Amor, P. Quaretti, R. Moratto, C. Dorange, E. Boone, and H. Krankenberg. Non-randomized, prospective, multi-centre evaluation of the ABSOLUTE .035 peripheral self-expanding stent system for occluded or stenotic superficial femoral or proximal popliteal arteries (ASSESS Trial): acute and 30-day results. J. Cardiovasc. Surg. (Torino) 48:719–726, 2007.

    CAS  Google Scholar 

Download references

Funding

This study was supported in part by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Numbers R01 HL125736 and F32 HL124905.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason MacTaggart or Alexey Kamenskiy.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleckis, K., Anttila, E., Aylward, P. et al. Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance. Ann Biomed Eng 46, 684–704 (2018). https://doi.org/10.1007/s10439-018-1990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1990-1

Keywords

Navigation