Skip to main content
Log in

Influence of Mitral Valve Anterior Leaflet in vivo Shape on Left Ventricular Ejection

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated that, due to the active involvement of leaflet contractile elements, the anterior mitral leaflet (AML) is very stiff and maintains a compound curvature during ventricular systole. Studies based on structural mechanics have shown that both leaflet stiffness and compound curvature are key factors limiting AML deformation in the presence of high left ventricular (LV) systolic pressures. In the present study, we tested the hypothesis that maintenance of this physiological AML compound curvature also plays a role in the optimization of LV outflow during ejection. The LV cavity, mitral valve and aortic root of a healthy human were reconstructed from cardiac magnetic resonance images on 18 evenly rotated long-axis cut-planes at peak systole. Computational fluid dynamics was used to assess hemodynamics within the ventricular outflow tract in the presence of three different AML profiles: (i) physiologically compound as measured in vivo, (ii) flat, (iii) concave (i.e., prolapsed) towards the ventricle. Relative to the physiologic profile, AML flat and concave profiles induced progressively increasing hemodynamic alterations at the LV outflow and immediately downstream to the aortic valve, characterized at peak systole by flow detachment, a mean vorticity increase of 15.6 and 53.1% and an instantaneous power loss increase of 12 and 46%, respectively. These results support the hypothesis that the physiological AML shape plays an important role in optimizing LV ejection. This implies that AML profile alterations associated with valvular disease or surgical repair procedures can significantly reduce LV ejection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Antunes, M. J. Mitral Valve Repair. Percha, Germany: Schulz, 141 pp, 1989.

  2. Bortolotti, U., A. D. Milano, and R. W. Frater. Mitral valve repair with artificial chordae: a review of its history, technical details, long-term results, and pathology. Ann. Thorac. Surg. 93:684–691, 2012.

    Article  Google Scholar 

  3. Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Goktepe, J. C. Swanson, S. Farahmandnia, N. B. Ingels, Jr, and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124:S81–S96, 2011.

    Article  Google Scholar 

  4. Bothe, W., J. P. Kvitting, J. C. Swanson, S. Goktepe, K. N. Vo, N. B. Ingels, and D. C. Miller. How do annuloplasty rings affect mitral leaflet dynamic motion? Eur. J. Cardiothorac. Surg. 38:340–349, 2010.

    Article  Google Scholar 

  5. Bothe, W., J. P. Kvitting, J. C. Swanson, S. Hartnett, N. B. Ingels, Jr, and D. C. Miller. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J. Thorac. Cardiovasc. Surg. 139:1114–1122, 2010.

    Article  Google Scholar 

  6. Bouma, W., I. C. van der Horst, I. J. Wijdh-den Hamer, M. E. Erasmus, F. Zijlstra, M. A. Mariani, and T. Ebels. Chronic ischaemic mitral regurgitation. Current treatment results and new mechanism-based surgical approaches. Eur. J. Cardiothorac. Surg. 37:170–185, 2010.

    Article  Google Scholar 

  7. Codreanu, I., M. D. Robson, S. J. Golding, B. A. Jung, K. Clarke, and C. J. Holloway. Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping. J. Cardiovasc. Magn. Reson. 12:48, 2010.

    Article  Google Scholar 

  8. Dagum, P., G. R. Green, F. J. Nistal, G. T. Daughters, T. A. Timek, L. E. Foppiano, A. F. Bolger, N. B. Ingels, Jr, and D. C. Miller. Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation 100:II54–II62, 1999.

    Google Scholar 

  9. De Hart, J., G. W. Peters, P. J. Schreurs, and F. P. Baaijens. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.

    Article  Google Scholar 

  10. Fenoglio, Jr, J. J., P. Tuan Duc, A. L. Wit, A. L. Bassett, and B. M. Wagner. Canine mitral complex. Ultrastructure and electromechanical properties. Circ. Res. 31:417–430, 1972.

    Article  Google Scholar 

  11. Gammie, J. S., S. Sheng, B. P. Griffith, E. D. Peterson, J. S. Rankin, S. M. O’Brien, and J. M. Brown. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 87:1431–1437; discussion 1437–1439, 2009.

    Google Scholar 

  12. Gillinov, A. M., and D. M. Cosgrove. Mitral valve repair for degenerative disease. J. Heart Valve Dis. 11(Suppl 1):S15–S20, 2002.

    Google Scholar 

  13. Goetz, W. A., H. S. Lim, F. Pekar, H. A. Saber, P. A. Weber, E. Lansac, D. E. Birnbaum, and C. M. Duran. Anterior mitral leaflet mobility is limited by the basal stay chords. Circulation 107:2969–2974, 2003.

    Article  Google Scholar 

  14. Hung, J., L. Papakostas, S. A. Tahta, B. G. Hardy, B. A. Bollen, C. M. Duran, and R. A. Levine. Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued LV remodeling as a moving target. Circulation 110:II85–90, 2004.

    Article  Google Scholar 

  15. Itoh, A., D. B. Ennis, W. Bothe, J. C. Swanson, G. Krishnamurthy, T. C. Nguyen, N. B. Ingels, Jr, and D. C. Miller. Mitral annular hinge motion contribution to changes in mitral septal-lateral dimension and annular area. J. Thorac. Cardiovasc. Surg. 138:1090–1099, 2009.

    Article  Google Scholar 

  16. Itoh, A., G. Krishnamurthy, J. C. Swanson, D. B. Ennis, W. Bothe, E. Kuhl, M. Karlsson, L. R. Davis, D. C. Miller, and N. B. Ingels, Jr. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 296:H1766–H1773, 2009.

    Article  Google Scholar 

  17. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    Article  Google Scholar 

  18. Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels, Jr. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295:H1141–H1149, 2008.

    Article  Google Scholar 

  19. Krishnamurthy, G., A. Itoh, J. C. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. Craig Miller, and N. B. Ingels, Jr. Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42:2697–2701, 2009.

    Article  Google Scholar 

  20. Krishnamurthy, G., A. Itoh, J. C. Swanson, D. C. Miller, and N. B. Ingels, Jr. Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298:H2221–H2225, 2010.

    Article  Google Scholar 

  21. Kvitting, J. P., W. Bothe, S. Goktepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, Jr, and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122:1683–1689, 2010.

    Article  Google Scholar 

  22. Kvitting, J. P., T. Ebbers, L. Wigstrom, J. Engvall, C. L. Olin, and A. F. Bolger. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J. Thorac. Cardiovasc. Surg. 127:1602–1607, 2004.

    Article  Google Scholar 

  23. Liu, X., P. Weale, G. Reiter, A. Kino, K. Dill, T. Gleason, T. Carroll, and J. Carr. Breathhold time-resolved three-directional MR velocity mapping of aortic flow in patients after aortic valve-sparing surgery. J. Magn. Reson. Imaging 29:569–575, 2009.

    Article  Google Scholar 

  24. Markl, M., M. T. Draney, D. C. Miller, J. M. Levin, E. E. Williamson, N. J. Pelc, D. H. Liang, and R. J. Herfkens. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130:456–463, 2005.

    Article  Google Scholar 

  25. McGee, E. C., A. M. Gillinov, E. H. Blackstone, J. Rajeswaran, G. Cohen, F. Najam, T. Shiota, J. F. Sabik, B. W. Lytle, P. M. McCarthy, and D. M. Cosgrove. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 128:916–924, 2004.

    Article  Google Scholar 

  26. Mihaljevic, T., B. K. Lam, J. Rajeswaran, M. Takagaki, M. S. Lauer, A. M. Gillinov, E. H. Blackstone, and B. W. Lytle. Impact of mitral valve annuloplasty combined with revascularization in patients with functional ischemic mitral regurgitation. J. Am. Coll. Cardiol. 49:2191–2201, 2007.

    Article  Google Scholar 

  27. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37:516–531, 2009.

    Article  Google Scholar 

  28. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10:339–355, 2011.

    Article  Google Scholar 

  29. Nakamura, M., S. Wada, and T. Yamaguchi. Computational analysis of blood flow in an integrated model of the left ventricle and the aorta. J. Biomech. Eng. 128:837–843, 2006.

    Article  Google Scholar 

  30. Nobili, M., U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. Maria Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J. Biomech. 41:2539–2550, 2008.

    Article  Google Scholar 

  31. Pope, S. B. Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000, 771 pp.

  32. Raiesi, H., U. Piomelli, and A. Pollard. Evaluation of turbulence models using direct numerical and large-eddy simulation data. J. Fluids Eng. 133:021203–021210, 2011.

    Article  Google Scholar 

  33. Rausch, M. K., W. Bothe, J. P. Kvitting, S. Goktepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44:1149–1157, 2011.

    Article  Google Scholar 

  34. Redaelli, A., G. Guadagni, R. Fumero, F. Maisano, and O. Alfieri. A computational study of the hemodynamics after “edge-to-edge” mitral valve repair. J. Biomech. Eng. 123:565, 2001.

    Article  Google Scholar 

  35. Ryan, L. P., B. M. Jackson, T. J. Eperjesi, T. J. Plappert, M. St John-Sutton, R. C. Gorman, and J. H. Gorman, 3rd. A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 136:726–734, 2008.

    Article  Google Scholar 

  36. Ryan, L. P., B. M. Jackson, H. Hamamoto, T. J. Eperjesi, T. J. Plappert, M. St John-Sutton, R. C. Gorman, and J. H. Gorman, 3rd. The influence of annuloplasty ring geometry on mitral leaflet curvature. Ann. Thorac. Surg. 86:749–760; discussion 749–760, 2008.

    Google Scholar 

  37. Saber, N. R., A. D. Gosman, N. B. Wood, P. J. Kilner, C. L. Charrier, and D. N. Firmin. Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann. Biomed. Eng. 29:275–283, 2001.

    Article  Google Scholar 

  38. Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37:503–515, 2009.

    Article  Google Scholar 

  39. Sengupta, P. P., A. J. Tajik, K. Chandrasekaran, and B. K. Khandheria. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc. Imaging 1:366–376, 2008.

    Article  Google Scholar 

  40. Skallerud, B., V. Prot, and I. S. Nordrum. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech. Model. Mechanobiol. 10:11–26, 2011.

    Article  Google Scholar 

  41. Smedira, N. G., R. Selman, D. M. Cosgrove, P. M. McCarthy, B. W. Lytle, P. C. Taylor, C. Apperson-Hansen, R. W. Stewart, and F. D. Loop. Repair of anterior leaflet prolapse: chordal transfer is superior to chordal shortening. J. Thorac. Cardiovasc. Surg. 112:287–291; discussion 291–282, 1996.

    Google Scholar 

  42. Sonnenblick, E. H., L. M. Napolitano, W. M. Daggett, and T. Cooper. An intrinsic neuromuscular basis for mitral valve motion in the dog. Circ. Res. 21:9–15, 1967.

    Article  Google Scholar 

  43. Stevanella, M., G. Krishnamurthy, E. Votta, J. C. Swanson, A. Redaelli, and N. B. Ingels, Jr. Mitral leaflet modeling: importance of in vivo shape and material properties. J. Biomech. 44:2229–2235, 2011.

    Article  Google Scholar 

  44. Stevanella, M., F. Maffessanti, C. A. Conti, E. Votta, A. Arnoldi, M. Lombardi, O. Parodi, E. G. Caiani, and A. Redaelli. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2:66–76, 2011.

    Article  Google Scholar 

  45. Stewart, S., E. Paterson, G. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. Day, K. Manning, S. Deutsch, M. Berman, M. Myers, and R. Malinauskas. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 3:139–160, 2012.

    Article  Google Scholar 

  46. Swanson, J. C., G. Krishnamurthy, A. Itoh, J. P. Kvitting, W. Bothe, D. Craig Miller, and N. B. Ingels, Jr. Multiple mitral leaflet contractile systems in the beating heart. J. Biomech. 44:1328–1333, 2011.

    Article  Google Scholar 

  47. Tanaka, M., T. Sakamoto, S. Sugawara, H. Nakajima, Y. Katahira, S. Ohtsuki, and H. Kanai. Blood flow structure and dynamics, and ejection mechanism in the left ventricle: analysis using echo-dynamography. J. Cardiol. 52:86–101, 2008.

    Article  Google Scholar 

  48. Varghese, S. S., S. H. Frankel, and P. F. Fischer. Modeling transition to turbulence in eccentric stenotic flows. J. Biomech. Eng. 130:014503, 2008.

    Article  Google Scholar 

  49. Weinberg, E. J., F. J. Schoen, and M. R. Mofrad. A computational model of aging and calcification in the aortic heart valve. PLoS One 4:e5960, 2009.

    Article  Google Scholar 

  50. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng. 27:572–579, 1999.

    Article  Google Scholar 

  51. Xiong, F., J. H. Yeo, C. K. Chong, Y. L. Chua, K. H. Lim, E. T. Ooi, and W. A. Goetz. Transection of anterior mitral basal stay chords alters left ventricular outflow dynamics and wall shear stress. J. Heart Valve Dis. 17:54–61; discussion 61, 2008.

    Google Scholar 

  52. Yiginer, O., N. Keser, N. Ozmen, A. Tokatli, E. Kardesoglu, Z. Isilak, O. Uz, and M. Uzun. Classic mitral valve prolapse causes enlargement in left ventricle even in the absence of significant mitral regurgitation. Echocardiography 29:123–129, 2012.

    Article  Google Scholar 

  53. Zia, M. I., V. Valenti, C. Cherston, M. Criscito, S. Uretsky, and S. Wolff. Relation of mitral valve prolapse to Basal left ventricular hypertrophy as determined by cardiac magnetic resonance imaging. Am. J. Cardiol. 109:1321–1325, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

The present work has been supported by Regione Lombardia and CILEA Consortium through a LISA Initiative (Laboratory for Interdisciplinary Advanced Simulation) 2010 Grant (http://lisa.cilea.it).

Conflict of interest

The authors declare that they do not have any conflict of interest and financial and personal relationships with other people or organisations that could inappropriately influence their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Stevanella.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Annalisa Dimasi and Emanuele Cattarinuzzi equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimasi, A., Cattarinuzzi, E., Stevanella, M. et al. Influence of Mitral Valve Anterior Leaflet in vivo Shape on Left Ventricular Ejection. Cardiovasc Eng Tech 3, 388–401 (2012). https://doi.org/10.1007/s13239-012-0105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-012-0105-7

Keywords

Navigation