Skip to main content

Advertisement

Log in

The fungal infections and their inhibition by Zinc oxide nanoparticles: an alternative approach to encounter drug resistance

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Over the last few years, varieties of fungal infections have created a serious threat to human populations worldwide. Fungi are prone to develop infections mainly in immune-compromised individuals, like patients suffering from HIV/AIDS, diabetes, and hematological disorders. Alarmingly, this threat is continuously increasing with the use of the long-term therapeutic and prophylactic use of antifungal agents that have promoted the emergence of multi-drug resistant fungi. Therefore, there is a need to use alternative antifungal agents that will act even against multi-drug-resistant fungi. Among all nanoparticles zinc oxide nanoparticles (ZnO NPs) received much more attention worldwide due to their unique properties like diverse morphology, large surface area to volume ratio, biocompatibility, broad-spectrum antibacterial, antifungal activities, less sensitivity for the development of resistance towards micro-organisms and stay non-hazardous in the environment. This review aims to discuss the multiple drug resistance in fungi, the general properties of ZnO, their synthesis methods, their antifungal applications, their antifungal mechanism, and the nanotoxicity of ZnO. This review will offer a door for the use of ZnO NP-based materials as an alternative approach for treating multi-drug resistant fungal infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour Technol. 2017;3:406–13. https://doi.org/10.1016/j.reffit.2017.03.002.

    Article  Google Scholar 

  2. Akhtar N, Khan S, Rehman SU, Rehman ZU, Mashwani ZUR, Rha ES, et al. Zinc oxide nanoparticles enhance the tolerance and remediation potential of Bacillus spp. against heavy metal stress. Adsorpt Sci Technol. 2021;2021:1–16.

    Article  Google Scholar 

  3. Alavi M, Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov Today. 2021;26:1953–62. https://doi.org/10.1016/j.drudis.2021.03.030.

    Article  CAS  PubMed  Google Scholar 

  4. Ali M, Donakowski MD, Mayer C, Winterer M. Chemical vapor functionalization: a continuous production process for functionalized ZnO nanoparticles. J Nanoparticle Res. 2012;14:0–10.

    Article  Google Scholar 

  5. Alshahrani SM, Khafagy E, Riadi Y, Al Saqr A, Alfadhel MM, Hegazy WAH. Amphotericin B-PEG conjugates of ZnO nanoparticles: enhancement antifungal activity with minimal toxicity. Pharmaceutics. 2022;14:1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvarez-Peral FJ, Zaragoza O, Pedreño Y, Argüelles JC. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology. 2002;148:2599–606.

    Article  CAS  PubMed  Google Scholar 

  7. Anjali KP, Sangeetha BM, Raghunathan R, Devi G, Dutta S. Seaweed mediated fabrication of zinc oxide nanoparticles and their antibacterial, antifungal and anticancer applications. ChemistrySelect. 2021;6:647–56.

    Article  CAS  Google Scholar 

  8. Ao W, Li J, Yang H, Zeng X, Ma X. Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technol. 2006;168:148–51.

    Article  CAS  Google Scholar 

  9. Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, et al. Drug-resistant fungi: an emerging challenge threatening our limited antifungal armamentarium. Antibiotics. 2020;9:1–29.

    Article  Google Scholar 

  10. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci. 2017;7:225–41.

    Article  CAS  Google Scholar 

  11. Aslani P, Mohammadi SR, Roudbary M. Novel formulated zinc oxide nanoparticles reduce Hwp1 gene expression involved in biofilm formation in candida albicans with minimum cytotoxicity effect on human cells. Jundishapur J Microbiol. 2018;11:1–6.

    Google Scholar 

  12. Babayevska N, Przysiecka Ł, Iatsunskyi I, Nowaczyk G, Jarek M, Janiszewska E, et al. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci Rep. 2022;12:1–13. https://doi.org/10.1038/s41598-022-12134-3.

    Article  CAS  Google Scholar 

  13. Bailore NN, Balladka SK, Doddapaneni SJDS, Mudiyaru MS. Fabrication of environmentally compatible biopolymer films of pullulan/piscean collagen/ZnO nanocomposite and their antifungal activity. J Polym Environ. 2021;29:1192–201. https://doi.org/10.1007/s10924-020-01953-y.

    Article  CAS  Google Scholar 

  14. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18:319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhattacharyya S, Gedanken A. A template-free, sonochemical route to porous ZnO nano-disks. Microporous Mesoporous Mater. 2008;110:553–9.

    Article  CAS  Google Scholar 

  16. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen WJ, Liu WL, Hsieh SH, Tsai TK. Preparation of nanosized ZnO using a brass. Appl Surf Sci. 2007;253:6749–53.

    Article  CAS  Google Scholar 

  18. Chin B, Xinxin H, Eng Z, Tan C, Khamis N, Loo JS. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.

    Article  Google Scholar 

  19. Chuo L, Mahmud S, Khadijah S, Bakhori M, Sirelkhatim A. Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder. Appl Surf Sci. 2014;292:405–12. https://doi.org/10.1016/j.apsusc.2013.11.152.

    Article  CAS  Google Scholar 

  20. da Silva BL, Abuçafy MP, Manaia EB, Junior JAO, Chiari-Andréo BG, Pietro RCLR, et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int J Nanomedicine. 2019;14:9395–410.

    Article  Google Scholar 

  21. Dananjaya SHS, Kumar RS, Yang M, Nikapitiya C, Lee J, De ZM. Department of marine life sciences, school of marine biomedical sciences, Jeju National SC. Int J Biol Macromol. 2017. https://doi.org/10.1016/j.ijbiomac.2017.11.046.

    Article  PubMed  Google Scholar 

  22. Dhanalakshmi R, Pandikumar A, Sujatha K, Gunasekaran P. Photocatalytic and antimicrobial activities of functionalized silicate sol-gel embedded ZnO-TiO2 nanocomposite materials. Mater Express. 2013;3:291–300.

    Article  CAS  Google Scholar 

  23. Dhiman S, Varma A, Prasad R, Goel A. Mechanistic insight of the antifungal potential of green synthesized zinc oxide nanoparticles against Alternaria brassicae. J Nanomater. 2022;2022:1–13.

    Article  Google Scholar 

  24. Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut. 2011;159:1749–56. https://doi.org/10.1016/j.envpol.2011.04.020.

    Article  CAS  PubMed  Google Scholar 

  25. Elkady MF, Hassan HS, Hafez EE, Fouad A. Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria. Bioinorg Chem Appl. 2015;2015:1–20.

    Article  Google Scholar 

  26. Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. 2015;345:329–36. https://doi.org/10.1016/j.apsusc.2015.03.176.

    Article  CAS  Google Scholar 

  27. Espitia PJP, Soares NFF, Coimbra JSR, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012;5:1447–64.

    Article  CAS  Google Scholar 

  28. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 2011;37:517–31. https://doi.org/10.1016/j.envint.2010.10.012.

    Article  CAS  PubMed  Google Scholar 

  29. Frade T, Melo Jorge ME, Gomes A. One-dimensional ZnO nanostructured films: effect of oxide nanoparticles. Mater Lett. 2012;82:13–5. https://doi.org/10.1016/j.matlet.2012.05.028.

    Article  CAS  Google Scholar 

  30. Ghorbani F, Gorji P, Mobarakeh MS, Mozaffari HR, Masaeli R, Safaei M. Optimized synthesis of xanthan gum/ZnO/TiO2 nanocomposite with high antifungal activity against pathogenic Candida albicans. J Nanomater. 2022. https://doi.org/10.1155/2022/7255181.

    Article  Google Scholar 

  31. Ghosh M, Mandal S, Roy A, Chakrabarty S, Chakrabarti G. Enhanced antifungal activity of fl uconazole conjugated with Cu-Ag-ZnO nanocomposite. Mater Sci Eng C. 2020;106: 110160. https://doi.org/10.1016/j.msec.2019.110160.

    Article  CAS  Google Scholar 

  32. Gu T, Yao C, Zhang K, Li C, Ding L, Huang Y, et al. Toxic effects of zinc oxide nanoparticles combined with vitamin C and casein phosphopeptides on gastric epithelium cells and the intestinal absorption of mice. RSC Adv. 2018;8:26078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hall-stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108. https://doi.org/10.1038/nrmicro821.

    Article  CAS  PubMed  Google Scholar 

  34. Hameed ASH, Karthikeyan C, Ahamed AP, Thajuddin N, Alharbi NS, Alharbi SA, et al. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci Rep. 2016;6:1–11. https://doi.org/10.1038/srep24312.

    Article  CAS  Google Scholar 

  35. Hasnidawani JN, Azlina HN, Norita H, Bonnia NN. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 2016;19:211–6. https://doi.org/10.1016/j.proche.2016.03.095.

    Article  CAS  Google Scholar 

  36. He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011;166:207–15. https://doi.org/10.1016/j.micres.2010.03.003.

    Article  CAS  PubMed  Google Scholar 

  37. Hernández-Meléndez D, Salas-Téllez E, Zavala-Franco A, Téllez G, Méndez-Albores A, Vázquez-Durán A. Inhibitory effect of flower-shaped zinc oxide nanostructures on the growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus link. Materials (Basel). 2018;11(8):1265. https://doi.org/10.3390/ma11081265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoseinzadeh A, Habibi-yangjeh A, Davari M. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Prog Nat Sci Mater Int. 2016;26:334–40. https://doi.org/10.1016/j.pnsc.2016.06.006.

    Article  CAS  Google Scholar 

  39. Hossain CM, Ryan LK, Gera M, Choudhuri S, Lyle N, Ali KA, et al. Antifungals and drug resistance. Encyclopedia. 2022;2:1722–37.

    Article  Google Scholar 

  40. Huang Y, He J, Zhang Y, Dai Y, Gu Y, Wang S, Zhou C. Morphology, structures and properties of ZnO nanobelts fabricated by Zn-powder evaporation without catalyst at lower temperature. J Mater Sci. 2006;41:3057–62.

    Article  CAS  Google Scholar 

  41. Hui A, Liu J, Ma J. Synthesis and morphology-dependent antimicrobial activity of cerium doped flower-shaped ZnO crystallites under visible light irradiation. Colloids Surf A Physicochem Eng Asp. 2016;506:519–25. https://doi.org/10.1016/j.colsurfa.2016.07.016.

    Article  CAS  Google Scholar 

  42. Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials. 2014;7(4):2833–81.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009;74:M46–52.

    Article  CAS  PubMed  Google Scholar 

  44. Jose M. Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B. 2005;109:9703–11.

    Article  Google Scholar 

  45. Joshaghani HR, Eskandari M. Antifungal effect of Sodium Dodecil Sulfate and Nano particle ZnO on growth inhibition of standard strain of Candida albicans. J Gorgan Univ Med Sci. 2011;12:2011.

    Google Scholar 

  46. Kairyte K, Kadys A, Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B Biol. 2013;128:78–84. https://doi.org/10.1016/j.jphotobiol.2013.07.017.

    Article  CAS  Google Scholar 

  47. Kalia A, Kaur J, Kaur A, Singh N. Antimycotic activity of biogenically synthesised metal and metal oxide nanoparticles against plant pathogenic fungus Fusarium moniliforme (F. fujikuroi). Indian J Exp Biol. 2020;58:263–70.

    CAS  Google Scholar 

  48. Kao Y, Chen Y, Cheng T, Chiung Y, Liu P. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci. 2012;125:462–72.

    Article  CAS  PubMed  Google Scholar 

  49. Katiyar A, Kumar N, Srivastava A. Optical properties of ZnO nanoparticles synthesized by co-precipitation method using LiOH. Mater Today Proc. 2018;5:9144–7. https://doi.org/10.1016/j.matpr.2017.10.034.

    Article  CAS  Google Scholar 

  50. Khalid M, Ur-Rahman S, Hassani D, Hayat K, Zhou P, Hui N. Advances in fungal-assisted phytoremediation of heavy metals: a review. Pedosphere. 2021;31:475–95. https://doi.org/10.1016/S1002-0160(20)60091-1.

    Article  CAS  Google Scholar 

  51. Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and vaccines based on nanoparticles for the treatment of systemic fungal infections. Front Cell Infect Microbiol. 2020;10:463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klink MJ, Laloo N, Taka A, Pakade V, Monapathi M, Modise J. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules. 2022;27:3532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kołodziejczak-Radzimska A, Jesionowski T, Krysztafkiewicz A. Obtaining zinc oxide from aqueous solutions of KOH and Zn(CH3COO)2. Physicochem Probl Miner Process. 2010;44:93–102.

    Google Scholar 

  54. Kong XY, Ding Y, Yang R, Wang ZL. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science (80-). 2004;303:1348–51.

    Article  CAS  Google Scholar 

  55. Król-Górniak A, Rafińska K, Monedeiro F, Pomastowski P, Buszewski B. Comparison study of cytotoxicity of bare and functionalized zinc oxide nanoparticles. Int J Mol Sci. 2021;22:9529.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kumar P, Kumar G, Chandra M, Ghosh S, Roos D, Swart HC. Defects induced enhancement of antifungal activities of Zn doped CuO nanostructures. Appl Surf Sci. 2021;560: 150026. https://doi.org/10.1016/j.apsusc.2021.150026.

    Article  CAS  Google Scholar 

  57. Lakshmeesha TR, Murali M, Ansari MA, Udayashankar AC, Alzohairy MA, Almatroudi A, et al. Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi J Biol Sci. 2020;27:1923–30. https://doi.org/10.1016/j.sjbs.2020.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother. 2018;73:i4-13.

    Article  CAS  PubMed  Google Scholar 

  59. León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, coccidioidomycosis, mucormycosis, and candidiasis. Pathogens. 2021;10:1303.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Levard C, Hotze EM, Lowry GV, Brown GE. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46:6900–14.

    Article  CAS  PubMed  Google Scholar 

  61. Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R, et al. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C. 2009;113:15997–6001.

    Article  CAS  Google Scholar 

  62. Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology. 2011;22:105101.

    Article  PubMed  Google Scholar 

  63. Mahalakshmi S, Hema N, Vijaya PP. In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route—a comparative study. Bionanoscience. 2020;10:112–21.

    Article  Google Scholar 

  64. Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep. 2019;17:71–80. https://doi.org/10.1016/j.bbrep.2018.11.007.

    Article  PubMed  Google Scholar 

  65. Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV, Shadija PG, Lokhande AC, et al. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Reports. 2019;17:71–80. https://doi.org/10.1016/j.bbrep.2018.11.007.

    Article  Google Scholar 

  66. Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat-Gadgil BS, Pandit A, et al. Biofilm formation to inhibition: role of zinc oxide-based nanoparticles. Mater Sci Eng C. 2020;108:1–74. https://doi.org/10.1016/j.msec.2019.110319.

    Article  CAS  Google Scholar 

  67. Mahamuni-Badiger PP, Patil PM, Patel PR, Dhanavade MJ, Badiger MV, Marathe YN, et al. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyethylene oxide (PEO) microfibers reinforced with ZnO nanocrystals for antibacterial and antibiofilm wound dressing applications. New J Chem. 2020;44(23):9754–66.

    Article  CAS  Google Scholar 

  68. Mamat MH, Khusaimi Z, Zahidi MM, Mahmood MR. Performance of an ultraviolet photoconductive sensor using well-aligned aluminium-doped zinc-oxide nanorod arrays annealed in an air and oxygen environment. Jpn J Appl Phys. 2011;50:06GF05. https://doi.org/10.1143/JJAP.50.06GF05.

    Article  CAS  Google Scholar 

  69. Megri Y, Arastehfar A, Boekhout T, Daneshnia F, Hörtnagl C, Sartori B, et al. Candida tropicalis is the most prevalent yeast species causing candidemia in Algeria: the urgent need for antifungal stewardship and infection control measures. Antimicrob Resist Infect Control. 2020;9:1–10.

    Article  Google Scholar 

  70. Miri A, Mahdinejad N, Ebrahimy O, Khatami M, Sarani M. Zinc oxide nanoparticles: biosynthesis, characterization, antifungal and cytotoxic activity. Mater Sci Eng C. 2019;104:109981.

    Article  CAS  Google Scholar 

  71. Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2C 12 cells. Appl Microbiol Biotechnol. 2011;92:617–30.

    Article  CAS  PubMed  Google Scholar 

  72. Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM. ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol. 2010;23:733–9.

    Article  CAS  PubMed  Google Scholar 

  73. Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med. 2009;20:235–41.

    Article  Google Scholar 

  74. Najibi Ilkhechi N, Mozammel M, Yari Khosroushahi A. Antifungal effects of ZnO, TiO2 and ZnO-TiO2 nanostructures on Aspergillus flavus. Pestic Biochem Physiol. 2021;176:104.

    Article  Google Scholar 

  75. Native OU, Chitosans M. Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials. 2013;6:4198–212.

    Article  Google Scholar 

  76. Navale GR, Thripuranthaka M, Late DJ. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. Sci Med Central. 2015;3:1–9.

    Google Scholar 

  77. Navale GR, Thripuranthaka M, Late DJ, Shinde SS. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed. 2015;3:1033.

    Google Scholar 

  78. Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. Synthesis approaches of Zinc oxide nanoparticles: a dilemma of ecotoxicity. J Nanomat. 2017;2017:1687–4110. https://doi.org/10.1155/2017/8510342.

    Article  CAS  Google Scholar 

  79. Nikoobakht B, Wang X, Herzing A, Shi J. Scalable synthesis and device integration of self-registered one-dimensional zinc oxide nanostructures and related materials. Chem Soc Rev. 2013;42:342–65.

    Article  CAS  PubMed  Google Scholar 

  80. Novak-Frazer L, Anees-Hill SP, Hassan D, Masania R, Moore CB, Richardson MD, et al. Deciphering Aspergillus fumigatus cyp51A-mediated triazole resistance by pyrosequencing of respiratory specimens. J Antimicrob Chemother. 2020;75:3501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008;9:035004. https://doi.org/10.1088/1468-6996/9/3/035004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles - An antimicrobial study. Sci Technol Adv Mater. 2008;9.9(3):1–7.

    Google Scholar 

  83. Pariona N, Paraguay-Delgado F, Basurto-Cereceda S, Morales-Mendoza JE, Hermida-Montero LA, Mtz-Enriquez AI. Shape-dependent antifungal activity of ZnO particles against phytopathogenic fungi. Appl Nanosci. 2020;10:435–43. https://doi.org/10.1007/s13204-019-01127-w.

    Article  CAS  Google Scholar 

  84. Patil PM, Mahamuni PP, Shadija PG, Bohara RA. Conversion of organic biomedical waste into value added product using green approach. Environ Sci Pollut Res. 2019;26:6696–705.

    Article  Google Scholar 

  85. Phiwdang K, Phensaijai M, Pecharapa W. Study of antifungal activities of CuO/ZnO nanocomposites synthesized by co-precipitation method. Adv Mater Res. 2013;802:89–93.

    Article  Google Scholar 

  86. Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Anuf AR, et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct. 2020;1211: 128107. https://doi.org/10.1016/j.molstruc.2020.128107.

    Article  CAS  Google Scholar 

  87. Polshettiwar V, Baruwati B, Varma RS. Self-Assembly of Metal Oxides into Synthesis and Application in Catalysis. ACS Nono. 2009;3:728–36.

    Article  CAS  Google Scholar 

  88. Pragathiswaran C, Smitha C, Barabadi H, Al-Ansari MM, Al-Humaid LA, Saravanan M. TiO2@ZnO nanocomposites decorated with gold nanoparticles: Synthesis, characterization and their antifungal, antibacterial, anti-inflammatory and anticancer activities. Inorg Chem Commun. 2020;121: 108210. https://doi.org/10.1016/j.inoche.2020.108210.

    Article  CAS  Google Scholar 

  89. Prasanth R, Gopinath D. Effect of ZnO nanoparticles on nasopharyngeal cancer cells viability and respiration. Appl Phys Lett. 2013;102:113702.

    Article  Google Scholar 

  90. Purwaningsih SY, Pratapa S, Triwikantoro, Darminto. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time. AIP Conf Proc. 2016;1708:1–7.

    Google Scholar 

  91. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27:4020–8.

    Article  CAS  PubMed  Google Scholar 

  92. Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv. 2022;4:1868–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int. 2016;2016:1–17.

    Article  Google Scholar 

  94. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52:311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schwartz VB, Thétiot F, Ritz S, Pütz S, Choritz L, Lappas A, et al. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (N-isopropylacrylamide) hydrogel surface layers. Adv Funct mater. 2012;22(11):2376–86.

    Article  CAS  Google Scholar 

  96. Sharma RK, Ghose R. Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram Int. 2014;41:1–9. https://doi.org/10.1016/j.ceramint.2014.09.016.

    Article  CAS  Google Scholar 

  97. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009;185:211–8.

    Article  CAS  PubMed  Google Scholar 

  98. Singh PK, Iqubal MK, Shukla VK, Shuaib M. Microemulsions: current trends in novel drug delivery systems. J Pharm Chem Biol Sci. 2014;1:39–51.

    CAS  Google Scholar 

  99. Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 2017;11:53–62. https://doi.org/10.2174/1874285801711010053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett. 2010;199:389–97. https://doi.org/10.1016/j.toxlet.2010.10.003.

    Article  CAS  PubMed  Google Scholar 

  101. Sonia S, Kumari HLJ, Ruckmani K, Sivakumar M. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: a potent nanocosmeceutical application. Mater Sci Eng C. 2017. https://doi.org/10.1016/j.msec.2017.05.059.

    Article  Google Scholar 

  102. Sousa F, Ferreira D, Reis S, Costa P. Current insights on antifungal therapy: novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals. 2020;13:1–30.

    Article  Google Scholar 

  103. Sun Q, Li J, Le T. Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J Agric Food Chem. 2018;66:11209–20.

    Article  CAS  PubMed  Google Scholar 

  104. Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis. 2014;2014:541340.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tien LC, Pearton SJ, Norton DP, Ren F. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. J Mater Sci. 2008;43:6925–32.

    Article  CAS  Google Scholar 

  106. Tiwari N, Pandit R, Gaikwad S, Gade A, Rai M. Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET Nanobiotechnol. 2016;11(2):205–11.

    Article  PubMed Central  Google Scholar 

  107. Uskokovi D. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surf B Biointerfaces. 2013;102:21–8.

    Article  Google Scholar 

  108. Van Loosdrecht MCM, Rittmann BE, Boltz JP, Daigger GT, Smets BF, Morgenroth E. From biofilm ecology to reactors: a focused review. Water Sci Technol. 2017;75:1753–60.

    Article  PubMed  Google Scholar 

  109. Vázquez K, Vanegas P, Cruzat C, Novoa N, Arrué R, Vanegas E. Antibacterial and antifungal properties of electrospun recycled pet polymeric fibers functionalized with zinc oxide nanoparticles. Polymers (Basel). 2021;13(21):3763.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wahab R, Ansari SG, Kim Y, Seo H, Shin H. Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl Surf Sci. 2007;253:7622–6.

    Article  CAS  Google Scholar 

  111. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–49. https://doi.org/10.2147/IJN.S121956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wani AH, Shah MA. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci. 2012;2:40–4.

    Google Scholar 

  113. Weldegebrieal GK. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review. Inorg Chem Commun. 2020;120: 108140. https://doi.org/10.1016/j.inoche.2020.108140.

    Article  CAS  Google Scholar 

  114. Wu JJ, Liu SC, Wu CT, Chen KH, Chen LC. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl Phys Lett. 2002;81:1312–4.

    Article  CAS  Google Scholar 

  115. Yang Y, Zhang C, Li K, Li Z. Fe2+ alleviated the toxicity of zno nanoparticles to pseudomonas tolaasii y-11 by changing nanoparticles behavior in solution. Microorganisms. 2021;9(11):2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zanni E, Bruni E, Chandraiahgari CR, De BG, Santangelo MG, Leone M, et al. Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches. J Nanobiotechnol. 2017;2017:1–12.

    Google Scholar 

  117. Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 2020;26:59–64. https://doi.org/10.1038/s41591-019-0709-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang G, Xiao Y, Yan J, Xie N, Liu R, Zhang Y. Ultraviolet Light-degradation behavior and antibacterial activity of polypropylene/ZnO nanoparticles fibers. Polymers (Basel). 2019;11(11):1841. https://doi.org/10.3390/polym11111841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang J, Yang H, Zhang X, Morbidoni M, Burgess CH, Kilmurray R, et al. Effect of processing temperature on film properties of ZnO prepared by the aqueous method and related organic photovoltaics and LEDs. Inorg Chem Front. 2020;7:2809–17.

    Article  CAS  Google Scholar 

  120. Zhou X, Hayat Z, Zhang D, Li M, Hu S, Wu Q, et al. Modification, and applications in food and agriculture. Processes. 2023;11(4):1193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude towards Rayat Shikshan Sanstha’s S. M. Joshi College Hadapsar, Pune for providing lab facilities and infrastructure.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

PM conceived and designed the index and theme of the review along with manuscript preparation. CN helped literature search, VG and NP helped in editing, PM performed and finalized the revision.

Corresponding author

Correspondence to Pranjali Mahamuni-Badiger.

Ethics declarations

Ethical approval

No approval was required for the study.

Informed consent and conflict of interest

All authors consented to publish and declare no conflict of interest.

Rights and permissions

The original source of the figures used in this review is provided with due permission obtained from the copyright holder, and to the open source where available.

Additional information

Corresponding Editor: Somnath Paul; Reviewer: Ishita Rehman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahamuni-Badiger, P., Ghare, V., Nikam, C. et al. The fungal infections and their inhibition by Zinc oxide nanoparticles: an alternative approach to encounter drug resistance. Nucleus (2023). https://doi.org/10.1007/s13237-023-00439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-023-00439-1

Keywords

Navigation