Skip to main content
Log in

Fabrication of Environmentally Compatible Biopolymer Films of Pullulan/Piscean  Collagen/ZnO Nanocomposite and Their Antifungal Activity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polysaccharide pullulan acts as a base matrix for the fabrication of pullulan/collagen blend film with dopant ZnO nanoparticles. From the FTIR data, it could be confirmed that there was significant interaction among the pullulan/collagen/ZnO-NPs. The weak interactions like H-bonding was evident by shift absorption band of hydroxyl groups into the lower frequency region. The powder X-ray diffraction study revealed the amorphous nature of pullulan/collagen blended film which was modified into a crystalline structure after the addition of ZnO nanoparticles. The transformation of the films into crystallinity and the presence of the Zn element was confirmed by SEM-EDAX. Further, the results of TGA revealed that the addition of nanoparticles influenced the thermal stability of the pullulan/collagen blended films. The addition of ZnO nanoparticles lead to an increase of the stiffness and mechanical resistance of the nanocomposite films; which showed an increase in their tensile strength evidenced by an increase in Young’s modulus. The fabricated films exhibited antifungal activity against Aspergillus niger with a maximum zone of inhibition of 18 mm for pullulan/collagen/ZnO-NPs (0.5%). However, the nanocomposite films easily dissolved in an aqueous medium, indicating their possible use as edible packaging films in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Diab T, Biliaderis CG, Gerasopoulos D, Sfakiotakis E (2001) J Sci Food Agric 81:988–1000

    Article  CAS  Google Scholar 

  2. Cazon P, Velazquez G, Ramirez JA, Vazquez M (2017) Food Hydrocoll 68:136–148

    Article  CAS  Google Scholar 

  3. Krasniewska K, Pobiega K, Gniewosz M (2019) Int J Food Eng 15:20190030

    Article  CAS  Google Scholar 

  4. Souza VGL, Rodrigues C, Valente S, Pimenta C, Pires JRA, Alves MM, Fernando AL (2020) Coatings 10:110

    Article  CAS  Google Scholar 

  5. Mirjalili F, Yassini Ardekani A (2017) J Food Process Eng 40:e12561

    Article  CAS  Google Scholar 

  6. Popovic SZ, Lazic VL, Hromis NM, Suput DZ, Bulut SN (2018) Biopolymers for Food Design. Academic Press, New York, pp 223–277

    Google Scholar 

  7. Dhaka RK, Upadhyay A (2018) J Pharm Innov 7:331–333

    Google Scholar 

  8. Said NS, Sarbon NM (2019). Active Antimicrob Food Packag. https://doi.org/10.5772/intechopen.80774

    Article  Google Scholar 

  9. Xing Y, Li W, Wang Q, Li X, Xu Q, Guo X, Yang H (2019) Molecules 24(9):1695

    Article  CAS  PubMed Central  Google Scholar 

  10. Mohamed SA, El-Sakhawy M, El-Sakhawy MAM (2020) Carbohydr Polym 20:116178

    Article  CAS  Google Scholar 

  11. Gabor D, Tita O (2012) Food Technol 16:3–17

    CAS  Google Scholar 

  12. Farris S, Unalan IU, Introzzi L, Fuentes-Alventosa JM, Cozzolino CA (2014) J Appl Polym Sci 131:40539

    Article  CAS  Google Scholar 

  13. Chen F, Yu S, Liu B, Ni Y, Yu C, Su Y, Yan D (2016) Sci Rep 6:20014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, Wei F, Han X (2018) New J Chem 42:17756–17761

    Article  CAS  Google Scholar 

  15. Popescu R, Moldoveanu M, Rau I (2009) Key Eng Mater 415:33–36

    Article  CAS  Google Scholar 

  16. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Materials 3:1863–1887

    Article  CAS  PubMed Central  Google Scholar 

  17. Silvipriya KS, Kumar KK, Bhat AR, Kumar BD, John A, Lakshmanan P (2015) J Appl Pharm Sci 5:123–127

    Article  Google Scholar 

  18. Radhakrishnan S, Nagarajan S, Bechelany M, Kalkura SN (2020) Processes and phenomena on the boundary between biogenic and Abiogenic nature. Springer, Cham, pp 3–22

    Book  Google Scholar 

  19. Martirosyan A, Schneider YJ (2014) Int J Environ Res Public Health 11:5720–5750

    Article  PubMed  PubMed Central  Google Scholar 

  20. Khoirunnisa AR, Joni IM, Panatarani C, Rochima E, Praseptiangga D (2018) AIP Conf Proc 1927:030041

    Article  CAS  Google Scholar 

  21. Jiang J, Pi J, Cai J (2018) Bioinorg Chem Appl 2018:1062562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sadeghi K, Shahedi M (2016) J Food Nutr Res 4:709–712

    Article  CAS  Google Scholar 

  23. Noshirvani N, Ghanbarzadeh B, Rezaei Mokarram R, Hashemi M (2017) Food Packag Shelf Life 11:106–114

    Article  Google Scholar 

  24. Amjadi S, Emaminia S, Nazari M, Davudian SH, Roufegarinejad L, Hamishehkar H (2019) Food Bioprocess Technol 12:1205–1219

    Article  CAS  Google Scholar 

  25. Rincker MJ, Hill GM, Link JE, Meyer AM, Rowntree JE (2005) Anim Sci J 83:2762–2774

    Article  CAS  Google Scholar 

  26. Prasad AS (2008) Exp Gerontol 43:370–377

    Article  CAS  PubMed  Google Scholar 

  27. Sahu D, Kannan GM, Vijayaraghavan R, Anand T, Khanum F (2013) Int Sch Res Notices 2013:316075

    Google Scholar 

  28. Tayel AA, Sorour NM, El-Baz AF, Wael F (2017) Food preservation. Academic Press, London, pp 487–526

    Book  Google Scholar 

  29. Abbas M, Buntinx M, Deferme W, Peeters R (2019) J Nanomater 9:1494

    Article  CAS  Google Scholar 

  30. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) J Nanopart Res 9:479–489

    Article  CAS  Google Scholar 

  31. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A (2016) Carbohydr Polym 151:9–19

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Lv M, Li F, Zeng M (2016) J Aquat Food Prod Technol 25:1056–1063

    Article  CAS  Google Scholar 

  33. Li W, Li L, Cao Y, Lan T, Chen H, Qin Y (2017) Nanomaterials 7:207

    Article  PubMed Central  CAS  Google Scholar 

  34. Fadeyibi A, Osunde ZD, Egwim EC, Idah PA (2017) J Agric Eng 48:137–146

    Google Scholar 

  35. Ngo TMP, Dang TMQ, Tran TX, Rachtanapun P (2018). Int J Polym Sci. https://doi.org/10.1155/2018/5645797

    Article  Google Scholar 

  36. Kumar S, Boro JC, Ray D, Mukherjee A, Dutta J (2019) Heliyon 5:e01867

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arora A, Padua GW (2010) J Food sci 75:R43–R49

    Article  CAS  PubMed  Google Scholar 

  38. Gautam RB, Kumar S (2015) Int Food Res J 3:43–61

    Google Scholar 

  39. Mihai MM, Dima MB, Dima B, Holban AM (2019) Materials 12:2176

    Article  CAS  PubMed Central  Google Scholar 

  40. Nagai T, Suzuki N (2000) Food Chem 68:277–328

    Article  CAS  Google Scholar 

  41. Ki CS, Kim JW, Hyun JH, Lee KH, Hattori M, Rah DK, Park YH (2007) J Appl Polym Sci 106:3922–3928

    Article  CAS  Google Scholar 

  42. Sionkowska A, Michalska M, Walczak M, Smiechowski K, Grabska S (2016) Mol Cryst Liq Cryst 640:180–190

    Article  CAS  Google Scholar 

  43. Umamaheswari G, Sanuja S, John VA, Kanth SV, Umapathy MJ (2015) Polym Polym Compos 23:199–204

    Google Scholar 

  44. Sa I, Bhanukeerthi AV, Poornimavelswamya UT, Thirumalai P (2016) RSC Adv 6:57863–57871

    Article  CAS  Google Scholar 

  45. Wang Y, Guo Z, Qian Y, Zhang Z, Lyu L, Wang Y, Ye F (2019) Polymers 11:1424

    Article  CAS  PubMed Central  Google Scholar 

  46. Cheng KC, Demirci A, Catchmark JM (2010) Appl Microbiol Biotechnol 86:853–861

    Article  CAS  PubMed  Google Scholar 

  47. Trovatti E, Fernandes SCM, Rubatat L, Freire CSR, Silvestre AJD, Neto CP (2012) Cellulose 19:729–737

    Article  CAS  Google Scholar 

  48. Saber-Samandari S, Gulcan HO, Saber-Samandari S, Gazi M (2014) Water Air Soil Pollut 225:2177

    Article  CAS  Google Scholar 

  49. Priya B, Gupta VK, Pathania D, Singha AS (2014) Carbohydr Polym 109:171–179

    Article  CAS  PubMed  Google Scholar 

  50. Soud SAS (2017) Al-Mustansiriyah J Sci 28:86–92

    Article  Google Scholar 

  51. Cai L, Shi H, Cao A, Jia J (2019) Sci Rep 9:1–11

    Google Scholar 

  52. Djaja NF, Montja DA, Saleh R (2013) Adv Mater Phys Chem 3:33

    Article  CAS  Google Scholar 

  53. Kumar S, Mudai A, Roy B, Basumatary IB, Mukherjee A, Dutta J (2020) Foods 9:1143

    Article  CAS  PubMed Central  Google Scholar 

  54. Talam S, Karumuri SR, Gunnam N (2012). ISRN Nanotechnol. https://doi.org/10.5402/2012/372505

    Article  Google Scholar 

  55. Arefi MR, Rezaei-Zarchi S (2012) Int J Mol Sci 13:4340–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mohan AC, Renjanadevi B (2016) Procedia Technol 24:761–766

    Article  Google Scholar 

  57. Cyras VP, Manfredi LB, Ton That M, Vazquez A (2008) Carbohydr Polym 73:55–63

    Article  CAS  Google Scholar 

  58. Fan Q, Xiao C (2008) Polym Compos 29:758–767

    Article  CAS  Google Scholar 

  59. Zhao J, Yu P, Dong S (2016) Materials 9:234

    Article  PubMed Central  CAS  Google Scholar 

  60. Synowiec A, Gniewosz M, Krasniewska K, Przybyl JL, Baczek K, Weglarz Z (2014) Innov Food Sci Emerg Technol 23:171–181

    Article  CAS  Google Scholar 

  61. He L, Liu Y, Mustapha A, Lin M (2011) Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from an NFSC fellowship (Id No. RGNF-2017-18-SC-KAR-41024). They also acknowledge DST PURSE and University Science Instrumentation Centre (USIC), Mangalore University for providing the SEM, TGA, and FTIR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarojini Kunhanna Balladka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailore, N.N., Balladka, S.K., Doddapaneni, S.J.D.S. et al. Fabrication of Environmentally Compatible Biopolymer Films of Pullulan/Piscean  Collagen/ZnO Nanocomposite and Their Antifungal Activity. J Polym Environ 29, 1192–1201 (2021). https://doi.org/10.1007/s10924-020-01953-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01953-y

Keywords

Navigation