Skip to main content
Log in

Analysis of genetic variability among bivoltine and multivoltine silkworm genotypes using inter simple sequence repeat and simple sequence repeat markers

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

The silkworm is an ideal lepidopteran model for the study of genetics and genetic diversity. In this study, inter-simple sequence repeats (ISSR) and Simple Sequence Repeats (SSRs) were used to investigate genetic relationships among 32 mulberry silkworm genotypes which included bivoltine and multivoltine silkworm breeds. Genomic DNA was isolated from the silkmoth samples and six polymorphic ISSRs were utilized to screen the genotypes. A total of 641 scorable alleles were identified among 32 silkworm genotypes utilizing six polymorphic ISSR markers and size ranged from ~ 100 to ~ 1400 bp. The percent polymorphism for six ISSR primers ranged from 46.15 to 63.63%. A total of six monomorphic alleles were observed, accounting for 8.57%. Similarly, three thermotolerant SSR markers were screened which revealed a total of 108 alleles with a polymorphism of 69.44%. The molecular mass of the alleles ranged from ~ 190 bp to ~ 250 bp. The chi square based similarity index represents a clear genetic similarity of the silkworm breeds BMV2 and BM22 (0.23) and the maximum genetic distance for breeds TMS knob and CSR27SL (1.32). Cluster dendrogram utilizing distance matrix classified the genotypes into two clusters with five sub clusters representing highest polymorphism with 21 genotypes. Thus, ISSRs and SSRs polymorphic markers are informative for estimating the extent of genetic diversity as well as to determine the pattern of genetic relationships between different silkworm genotypes and provide unique molecular identity based on the identified monomorphic bands. ISSR and SSR marker-based barcodes could be an effective tool for the selection of parentage in silkworm breeding programs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alam K, Raviraj VS, Chowdhury T, Bhuimali A, Ghosh P, Saha S. Application of biotechnology in sericulture: progress, scope and prospect. Nucleus. 2022;65(1):129–221.

    Article  Google Scholar 

  2. Awasthi AK, Nagaraja GM, Naik GV, Sriramana Thangavelu K, Nagaraju J. Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet. 2004;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bakappa S, Talebi E, Subramanya G. Role of molecular markers (RAPD & ISSR) in silkworm conservation. Int J Adv Biotechnol Res. 2011;1(1):01–7.

    Google Scholar 

  4. Bijaya T, Ramachandra NB. Genomic introgression in laboratory evolved hybrid races, Cytorace 1 and Fissioncytorace-1 of Nasuta-Albomicans Complex (NAC) of Drosophila as revealed by RAPD and ISSR markers. Ital J Zool. 2012;79(4):520–9.

    Article  Google Scholar 

  5. Chandrakanth N, Moorthy SM, Ponnuvel KM, Sivaprasad V. Identification of microsatellite markers linked to thermotolerance in silkworm by bulk segregant analysis and in silico mapping. Genetika. 2015;47(3):1063–115.

    Article  Google Scholar 

  6. Chatterjee SN, Pradeep AR. Molecular markers (RAPD) associated with growth, yield and origin of the silkworm, Bombyx mori in India. Rus J Genet. 2003;39:1612–712.

    Article  CAS  Google Scholar 

  7. Chatterjee SN, Mohandas TP. Identification of ISSR markers associated with productivity traits in silkworm Bombyx mori L. Genome. 2003;46(3):438–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhury MA, Vandenberg B, Warkentin T. Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica. 2002;127:317.

    Article  CAS  Google Scholar 

  9. Dos Santos LF, de Oliveira EJ, dos Santos SA, de Carvalho FM, Costa JL, Padua JG. ISSR markers as a tool for the assessment of genetic diversity in Passiflora. Biochem Genet. 2011;49(7–8):540–54.

    Article  CAS  PubMed  Google Scholar 

  10. Estoup A, Solignac M, Harry M, Cornuet JM. Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nuc Acids Res. 1993;21:1427–8.

    Article  CAS  Google Scholar 

  11. Gaviria DA, Aguilar E, Serrano HJ, Alegria AH. DNA fingerprinting using AFLP markers to search for markers associated with yield attributes in the silkworm Bombyx mori. J Insect Sci. 2006;6:1–10.

    Article  PubMed  Google Scholar 

  12. Goldsmith MR, Shimada T, Abe H. The genetics and genomics of the silkworm Bombyx mori. Ann Rev Entomol. 2005;50:71–100.

    Article  CAS  Google Scholar 

  13. Goulao L, Oliveira CM. Molecular characterisation of cultivars of apple (Malus × domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica. 2001;122:81–9.

    Article  CAS  Google Scholar 

  14. Jankowski C, Naser F, Nag DK. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc Natl Acad Sci USA. 2000;97:2134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kar PK, Vijayan K, Nair CV, Mohandas TP, Saratchandra B, Thangavelu K. Genetic variability and genetic structure of wild and semi-domestic populations of tasar silkworm (Antheraea mylitta) ecorace Daba as revealed through ISSR markers. Genetica. 2005;125:173–210.

    Article  CAS  PubMed  Google Scholar 

  16. Kimpton CP, Gill P, Walton A, Urquhart A, Millican ES, Adams M. Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl. 1993;3:13–22.

    Article  CAS  PubMed  Google Scholar 

  17. Kostia S, Ruohonen-Lehto M, Vainola R, Varvio SL. Phylogenetic information in inter-SINE and inter-SSR fingerprints of the Artiodactyla and evolution of the BovtA SINE. Heredity. 2000;84:37–45.

    Article  CAS  PubMed  Google Scholar 

  18. Mason AS. SSR genotyping. In: Batley J, editor. Plant genotyping. New York: Springer; 2015. p. 77–89.

    Chapter  Google Scholar 

  19. Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Kadono-Okuda K, Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR, Maeda S. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci. 2003;100(24):14121–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moorthy SM, Chandrakanth N, Sivaprasad V. Molecular marker based selection of parents for breeding thermotolerant silkworm breeds/hybrids suitable for tropics of india. Indian J Seric. 2017;56(1–2):10–6.

    Google Scholar 

  21. Nagaraja GM, Nagaraju J. Genome fingerprinting of the silkworm, Bombyx mori using random arbitrary primers. Electrophoresis. 1995;16:1633–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nagaraju J, Goldsmith MR. Silkworm genomics:progress and prospects. Curr Sci. 2002;83:415–25.

    CAS  Google Scholar 

  23. Pradeep AR, Chatterjee SN, Nair CV. Genetic differentiation induced by selection in an inbred population of the silkworm Bombyx mori, revealed by RAPD and ISSR marker systems. J Appl Genet. 2005;46:291–307.

    PubMed  Google Scholar 

  24. Srivastava PP, Kar PK, Awasthi AK, Urs SR. Identification and association of ISSR markers for thermal stress in polyvoltine silkworm Bombyx mori. Russ J Genet. 2007;43:858–64.

    Article  CAS  Google Scholar 

  25. Reddy KD, Nagaraju J, Abraham EG. Genetic characterization of the silkworm Bombyx mori by simple sequence repeat (SSR)–anchored PCR. Heredity. 1999;83:681–7.

    Article  CAS  PubMed  Google Scholar 

  26. Reineke A, Karlovsky P, Zebitz CPW. Preparation and purification of DNA from insects for AFLP analysis. Insect Mol Biol. 1998;7:95–8.

    Article  CAS  PubMed  Google Scholar 

  27. Renuka G, Shamitha G. Genetic variation in ecoraces of tropical tasar silkworm, Antheraea mylitta using SSR markers. J Genet. 2016;95:777–808.

    Article  CAS  PubMed  Google Scholar 

  28. Sandes SS, Zucchi MI, Pinheiro JB, Bajay MM, Batista CE, Brito FA, et al. Molecular characterization of patchouli (Pogostemon spp) germplasm. Genet Mol Res. 2016;15(1):2–12.

    Article  Google Scholar 

  29. Schlotterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000;109:365–71.

    Article  CAS  PubMed  Google Scholar 

  30. Soares AN, Vitoria MF, Nascimento AL, Ledo AS, Rabbani AR, Silva AV. Genetic diversity in natural populations of mangaba in Sergipe, the largest producer State in Brazil. Genet Mol Res. 2016;15(3):1–12.

    Article  Google Scholar 

  31. Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch pair. Nature. 1993;365:274–6.

    Article  CAS  PubMed  Google Scholar 

  32. Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW. An amplified fragment length polymorphism map of the silkworm. Genetics. 2001;157(3):1277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trochez-Solarte JD, Ruiz-Erazo X, Almanza-Pinzon M, Zambrano-Gonzalez G. Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Res. 2019;13(8):1424.

    Article  Google Scholar 

  34. Vieira MLC, Santini L, Diniz AL, Munhoz CF. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39(3):312–28.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vijayan K, Anuradha HJ, Nair CV, Pradeep AR, Awasthi AK, Saratchandra B, Rahman SA, Singh KC, Chakraborti R, Urs SR. Genetic diversity and differentiation among populations of the Indian eri silkworm, Samia cynthia ricini, revealed by ISSR markers. J Insect Sci. 2006;6:1–11.

    Article  CAS  PubMed  Google Scholar 

  36. Wang ZY, Tanksley SD. Restriction fragment length polymorphism in Oryza sativa L. Genome. 1989;32:1113–8.

    Article  CAS  Google Scholar 

  37. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wolfe AD, Liston A. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ, editors. Molecular systematics of plants II: DNA sequencing. New York: Kluwer; 1998. p. 43–86.

    Chapter  Google Scholar 

  39. Yamamoto K, Narukawa J, Kadono-Okuda K, Nohata J, Sasanuma M, Suetsugu Y, Banno Y, Fujii H, Goldsmith MR, Mita K. Construction of a single nucleotide polymorphism linkage map for the silkworm, Bombyx mori, based on bacterial artificial chromosome end sequences. Genetics. 2006;173(1):151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20:176–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSRTI, Mysuru for the support in carrying out the work.

Funding

The work was funded by Central Silk Board, Ministry of Textiles and Department of Biotechnology, New Delhi, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized and designed by KL, SL, MSM, SV. Material preparation was carried out by KL, SL and KBC. Data collection and analysis was performed by KL, SL, PI and HG. The first draft of the manuscript was written by KL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kusuma Lingaiah.

Ethics declarations

Conflict of interest

The authors declare that there is no competing / conflict of interest.

Consent for publication

The authors hereby agree for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Bani Gajra, Reviewers: Gaurab Gangopadhyay, K Nagraja, Manoj M. Lekhak.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lingaiah, K., Lokanath, S., Iyengar, P. et al. Analysis of genetic variability among bivoltine and multivoltine silkworm genotypes using inter simple sequence repeat and simple sequence repeat markers. Nucleus (2023). https://doi.org/10.1007/s13237-023-00436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-023-00436-4

Keywords

Navigation